llvm-6502/lib/Target/PTX/PTXTargetMachine.cpp

366 lines
13 KiB
C++
Raw Normal View History

//===-- PTXTargetMachine.cpp - Define TargetMachine for PTX ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Top-level implementation for the PTX target.
//
//===----------------------------------------------------------------------===//
#include "PTX.h"
#include "PTXTargetMachine.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
namespace llvm {
MCStreamer *createPTXAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS,
bool isVerboseAsm, bool useLoc,
bool useCFI, bool useDwarfDirectory,
MCInstPrinter *InstPrint,
MCCodeEmitter *CE,
MCAsmBackend *MAB,
bool ShowInst);
}
extern "C" void LLVMInitializePTXTarget() {
RegisterTargetMachine<PTX32TargetMachine> X(ThePTX32Target);
RegisterTargetMachine<PTX64TargetMachine> Y(ThePTX64Target);
TargetRegistry::RegisterAsmStreamer(ThePTX32Target, createPTXAsmStreamer);
TargetRegistry::RegisterAsmStreamer(ThePTX64Target, createPTXAsmStreamer);
}
namespace {
const char* DataLayout32 =
"e-p:32:32-i64:32:32-f64:32:32-v128:32:128-v64:32:64-n32:64";
const char* DataLayout64 =
"e-p:64:64-i64:32:32-f64:32:32-v128:32:128-v64:32:64-n32:64";
}
// DataLayout and FrameLowering are filled with dummy data
PTXTargetMachine::PTXTargetMachine(const Target &T,
StringRef TT, StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL,
bool is64Bit)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
DataLayout(is64Bit ? DataLayout64 : DataLayout32),
Subtarget(TT, CPU, FS, is64Bit),
FrameLowering(Subtarget),
InstrInfo(*this),
TSInfo(*this),
TLInfo(*this) {
}
void PTX32TargetMachine::anchor() { }
PTX32TargetMachine::PTX32TargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: PTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {
}
void PTX64TargetMachine::anchor() { }
PTX64TargetMachine::PTX64TargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: PTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {
}
bool PTXTargetMachine::addInstSelector(PassManagerBase &PM) {
PM.add(createPTXISelDag(*this, getOptLevel()));
return false;
}
bool PTXTargetMachine::addPostRegAlloc(PassManagerBase &PM) {
// PTXMFInfoExtract must after register allocation!
//PM.add(createPTXMFInfoExtract(*this));
return false;
}
bool PTXTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
formatted_raw_ostream &Out,
CodeGenFileType FileType,
bool DisableVerify) {
// This is mostly based on LLVMTargetMachine::addPassesToEmitFile
// Add common CodeGen passes.
MCContext *Context = 0;
if (addCommonCodeGenPasses(PM, DisableVerify, Context))
return true;
assert(Context != 0 && "Failed to get MCContext");
if (hasMCSaveTempLabels())
Context->setAllowTemporaryLabels(false);
const MCAsmInfo &MAI = *getMCAsmInfo();
const MCSubtargetInfo &STI = getSubtarget<MCSubtargetInfo>();
OwningPtr<MCStreamer> AsmStreamer;
switch (FileType) {
default: return true;
case CGFT_AssemblyFile: {
MCInstPrinter *InstPrinter =
getTarget().createMCInstPrinter(MAI.getAssemblerDialect(), MAI, STI);
// Create a code emitter if asked to show the encoding.
MCCodeEmitter *MCE = 0;
MCAsmBackend *MAB = 0;
MCStreamer *S = getTarget().createAsmStreamer(*Context, Out,
true, /* verbose asm */
hasMCUseLoc(),
hasMCUseCFI(),
hasMCUseDwarfDirectory(),
InstPrinter,
MCE, MAB,
false /* show MC encoding */);
AsmStreamer.reset(S);
break;
}
case CGFT_ObjectFile: {
llvm_unreachable("Object file emission is not supported with PTX");
}
case CGFT_Null:
// The Null output is intended for use for performance analysis and testing,
// not real users.
AsmStreamer.reset(createNullStreamer(*Context));
break;
}
// MC Logging
//AsmStreamer.reset(createLoggingStreamer(AsmStreamer.take(), errs()));
// Create the AsmPrinter, which takes ownership of AsmStreamer if successful.
FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer);
if (Printer == 0)
return true;
// If successful, createAsmPrinter took ownership of AsmStreamer.
AsmStreamer.take();
PM.add(Printer);
PM.add(createGCInfoDeleter());
return false;
}
bool PTXTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
bool DisableVerify,
MCContext *&OutContext) {
// Add standard LLVM codegen passes.
// This is derived from LLVMTargetMachine::addCommonCodeGenPasses, with some
// modifications for the PTX target.
// Standard LLVM-Level Passes.
// Basic AliasAnalysis support.
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
PM.add(createTypeBasedAliasAnalysisPass());
PM.add(createBasicAliasAnalysisPass());
// Before running any passes, run the verifier to determine if the input
// coming from the front-end and/or optimizer is valid.
if (!DisableVerify)
PM.add(createVerifierPass());
// Run loop strength reduction before anything else.
if (getOptLevel() != CodeGenOpt::None) {
PM.add(createLoopStrengthReducePass(getTargetLowering()));
//PM.add(createPrintFunctionPass("\n\n*** Code after LSR ***\n", &dbgs()));
}
PM.add(createGCLoweringPass());
// Make sure that no unreachable blocks are instruction selected.
PM.add(createUnreachableBlockEliminationPass());
PM.add(createLowerInvokePass(getTargetLowering()));
// The lower invoke pass may create unreachable code. Remove it.
PM.add(createUnreachableBlockEliminationPass());
if (getOptLevel() != CodeGenOpt::None)
PM.add(createCodeGenPreparePass(getTargetLowering()));
PM.add(createStackProtectorPass(getTargetLowering()));
addPreISel(PM);
//PM.add(createPrintFunctionPass("\n\n"
// "*** Final LLVM Code input to ISel ***\n",
// &dbgs()));
// All passes which modify the LLVM IR are now complete; run the verifier
// to ensure that the IR is valid.
if (!DisableVerify)
PM.add(createVerifierPass());
// Standard Lower-Level Passes.
// Install a MachineModuleInfo class, which is an immutable pass that holds
// all the per-module stuff we're generating, including MCContext.
MachineModuleInfo *MMI = new MachineModuleInfo(*getMCAsmInfo(),
*getRegisterInfo(),
&getTargetLowering()->getObjFileLowering());
PM.add(MMI);
OutContext = &MMI->getContext(); // Return the MCContext specifically by-ref.
// Set up a MachineFunction for the rest of CodeGen to work on.
PM.add(new MachineFunctionAnalysis(*this));
// Ask the target for an isel.
if (addInstSelector(PM))
return true;
// Print the instruction selected machine code...
printAndVerify(PM, "After Instruction Selection");
// Expand pseudo-instructions emitted by ISel.
PM.add(createExpandISelPseudosPass());
// Pre-ra tail duplication.
if (getOptLevel() != CodeGenOpt::None) {
PM.add(createTailDuplicatePass(true));
printAndVerify(PM, "After Pre-RegAlloc TailDuplicate");
}
// Optimize PHIs before DCE: removing dead PHI cycles may make more
// instructions dead.
if (getOptLevel() != CodeGenOpt::None)
PM.add(createOptimizePHIsPass());
// If the target requests it, assign local variables to stack slots relative
// to one another and simplify frame index references where possible.
PM.add(createLocalStackSlotAllocationPass());
if (getOptLevel() != CodeGenOpt::None) {
// With optimization, dead code should already be eliminated. However
// there is one known exception: lowered code for arguments that are only
// used by tail calls, where the tail calls reuse the incoming stack
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
PM.add(createDeadMachineInstructionElimPass());
printAndVerify(PM, "After codegen DCE pass");
PM.add(createMachineLICMPass());
PM.add(createMachineCSEPass());
PM.add(createMachineSinkingPass());
printAndVerify(PM, "After Machine LICM, CSE and Sinking passes");
PM.add(createPeepholeOptimizerPass());
printAndVerify(PM, "After codegen peephole optimization pass");
}
// Run pre-ra passes.
if (addPreRegAlloc(PM))
printAndVerify(PM, "After PreRegAlloc passes");
// Perform register allocation.
PM.add(createPTXRegisterAllocator());
printAndVerify(PM, "After Register Allocation");
// Perform stack slot coloring and post-ra machine LICM.
if (getOptLevel() != CodeGenOpt::None) {
// FIXME: Re-enable coloring with register when it's capable of adding
// kill markers.
PM.add(createStackSlotColoringPass(false));
// FIXME: Post-RA LICM has asserts that fire on virtual registers.
// Run post-ra machine LICM to hoist reloads / remats.
//if (!DisablePostRAMachineLICM)
// PM.add(createMachineLICMPass(false));
printAndVerify(PM, "After StackSlotColoring and postra Machine LICM");
}
// Run post-ra passes.
if (addPostRegAlloc(PM))
printAndVerify(PM, "After PostRegAlloc passes");
PM.add(createExpandPostRAPseudosPass());
printAndVerify(PM, "After ExpandPostRAPseudos");
// Insert prolog/epilog code. Eliminate abstract frame index references...
PM.add(createPrologEpilogCodeInserter());
printAndVerify(PM, "After PrologEpilogCodeInserter");
// Run pre-sched2 passes.
if (addPreSched2(PM))
printAndVerify(PM, "After PreSched2 passes");
// Second pass scheduler.
if (getOptLevel() != CodeGenOpt::None) {
PM.add(createPostRAScheduler(getOptLevel()));
printAndVerify(PM, "After PostRAScheduler");
}
// Branch folding must be run after regalloc and prolog/epilog insertion.
if (getOptLevel() != CodeGenOpt::None) {
PM.add(createBranchFoldingPass(getEnableTailMergeDefault()));
printNoVerify(PM, "After BranchFolding");
}
// Tail duplication.
if (getOptLevel() != CodeGenOpt::None) {
PM.add(createTailDuplicatePass(false));
printNoVerify(PM, "After TailDuplicate");
}
PM.add(createGCMachineCodeAnalysisPass());
//if (PrintGCInfo)
// PM.add(createGCInfoPrinter(dbgs()));
if (getOptLevel() != CodeGenOpt::None) {
PM.add(createCodePlacementOptPass());
printNoVerify(PM, "After CodePlacementOpt");
}
if (addPreEmitPass(PM))
printNoVerify(PM, "After PreEmit passes");
PM.add(createPTXMFInfoExtract(*this, getOptLevel()));
PM.add(createPTXFPRoundingModePass(*this, getOptLevel()));
return false;
}