llvm-6502/lib/Target/PowerPC/PPC64ISelPattern.cpp

1641 lines
59 KiB
C++
Raw Normal View History

//===-- PPC64ISelPattern.cpp - A pattern matching inst selector for PPC64 -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for 64 bit PowerPC.
//
//===----------------------------------------------------------------------===//
#include "PowerPC.h"
#include "PowerPCInstrBuilder.h"
#include "PowerPCInstrInfo.h"
#include "PPC64RegisterInfo.h"
#include "llvm/Constants.h" // FIXME: REMOVE
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/Statistic.h"
#include <set>
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface
namespace {
class PPC64TargetLowering : public TargetLowering {
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
int ReturnAddrIndex; // FrameIndex for return slot.
public:
PPC64TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
// Fold away setcc operations if possible.
setSetCCIsExpensive();
// Set up the register classes.
addRegisterClass(MVT::i64, PPC64::GPRCRegisterClass);
addRegisterClass(MVT::f32, PPC64::FPRCRegisterClass);
addRegisterClass(MVT::f64, PPC64::FPRCRegisterClass);
// PowerPC has no intrinsics for these particular operations
setOperationAction(ISD::BRCONDTWOWAY, MVT::Other, Expand);
setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
setOperationAction(ISD::MEMSET, MVT::Other, Expand);
setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
// We don't support sin/cos/sqrt/fmod
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
setOperationAction(ISD::SREM , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
setOperationAction(ISD::SREM , MVT::f32, Expand);
// PPC 64 has i16 and i32 but no i8 (or i1) SEXTLOAD
setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
// PowerPC has no SREM/UREM instructions
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// PowerPC has these, but they are not implemented
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
setOperationAction(ISD::CTTZ , MVT::i64, Expand);
setOperationAction(ISD::CTLZ , MVT::i64, Expand);
setShiftAmountFlavor(Extend); // shl X, 32 == 0
addLegalFPImmediate(+0.0); // Necessary for FSEL
addLegalFPImmediate(-0.0); //
computeRegisterProperties();
}
/// LowerArguments - This hook must be implemented to indicate how we should
/// lower the arguments for the specified function, into the specified DAG.
virtual std::vector<SDOperand>
LowerArguments(Function &F, SelectionDAG &DAG);
/// LowerCallTo - This hook lowers an abstract call to a function into an
/// actual call.
virtual std::pair<SDOperand, SDOperand>
LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC,
bool isTailCall, SDOperand Callee, ArgListTy &Args,
SelectionDAG &DAG);
virtual std::pair<SDOperand, SDOperand>
LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
virtual std::pair<SDOperand,SDOperand>
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
const Type *ArgTy, SelectionDAG &DAG);
virtual std::pair<SDOperand, SDOperand>
LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
SelectionDAG &DAG);
};
}
std::vector<SDOperand>
PPC64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
//
// add beautiful description of PPC stack frame format, or at least some docs
//
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineBasicBlock& BB = MF.front();
std::vector<SDOperand> ArgValues;
// Due to the rather complicated nature of the PowerPC ABI, rather than a
// fixed size array of physical args, for the sake of simplicity let the STL
// handle tracking them for us.
std::vector<unsigned> argVR, argPR, argOp;
unsigned ArgOffset = 48;
unsigned GPR_remaining = 8;
unsigned FPR_remaining = 13;
unsigned GPR_idx = 0, FPR_idx = 0;
static const unsigned GPR[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
// Add DAG nodes to load the arguments... On entry to a function on PPC,
// the arguments start at offset 48, although they are likely to be passed
// in registers.
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
SDOperand newroot, argt;
bool needsLoad = false;
MVT::ValueType ObjectVT = getValueType(I->getType());
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
if (GPR_remaining > 0) {
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
argt = newroot = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32,
DAG.getRoot());
if (ObjectVT != MVT::i64)
argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot);
} else {
needsLoad = true;
}
break;
case MVT::f32:
case MVT::f64:
if (FPR_remaining > 0) {
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
argt = newroot = DAG.getCopyFromReg(FPR[FPR_idx], ObjectVT,
DAG.getRoot());
--FPR_remaining;
++FPR_idx;
} else {
needsLoad = true;
}
break;
}
// We need to load the argument to a virtual register if we determined above
// that we ran out of physical registers of the appropriate type
if (needsLoad) {
unsigned SubregOffset = 0;
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i1:
case MVT::i8: SubregOffset = 7; break;
case MVT::i16: SubregOffset = 6; break;
case MVT::i32:
case MVT::f32: SubregOffset = 4; break;
case MVT::i64:
case MVT::f64: SubregOffset = 0; break;
}
int FI = MFI->CreateFixedObject(8, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
FIN = DAG.getNode(ISD::ADD, MVT::i64, FIN,
DAG.getConstant(SubregOffset, MVT::i64));
argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL));
}
// Every 4 bytes of argument space consumes one of the GPRs available for
// argument passing.
if (GPR_remaining > 0) {
--GPR_remaining;
++GPR_idx;
}
ArgOffset += 8;
DAG.setRoot(newroot.getValue(1));
ArgValues.push_back(argt);
}
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (F.isVarArg()) {
VarArgsFrameIndex = MFI->CreateFixedObject(8, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64);
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing the
// result of va_next.
std::vector<SDOperand> MemOps;
for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
SDOperand Val = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i64, DAG.getRoot());
SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
Val, FIN, DAG.getSrcValue(NULL));
MemOps.push_back(Store);
// Increment the address by eight for the next argument to store
SDOperand PtrOff = DAG.getConstant(8, getPointerTy());
FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
}
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
}
return ArgValues;
}
std::pair<SDOperand, SDOperand>
PPC64TargetLowering::LowerCallTo(SDOperand Chain,
const Type *RetTy, bool isVarArg,
unsigned CallingConv, bool isTailCall,
SDOperand Callee, ArgListTy &Args,
SelectionDAG &DAG) {
// args_to_use will accumulate outgoing args for the ISD::CALL case in
// SelectExpr to use to put the arguments in the appropriate registers.
std::vector<SDOperand> args_to_use;
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area.
unsigned NumBytes = 48;
if (Args.empty()) {
Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy()));
} else {
NumBytes = 8 * Args.size(); // All arguments are rounded up to 8 bytes
// Just to be safe, we'll always reserve the full 48 bytes of linkage area
// plus 64 bytes of argument space in case any called code gets funky on us.
if (NumBytes < 112) NumBytes = 112;
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy()));
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDOperand StackPtr = DAG.getCopyFromReg(PPC::R1, MVT::i32,
DAG.getEntryNode());
// Figure out which arguments are going to go in registers, and which in
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
unsigned ArgOffset = 48;
unsigned GPR_remaining = 8;
unsigned FPR_remaining = 13;
std::vector<SDOperand> MemOps;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MVT::ValueType ArgVT = getValueType(Args[i].second);
switch (ArgVT) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
// Promote the integer to 64 bits. If the input type is signed use a
// sign extend, otherwise use a zero extend.
if (Args[i].second->isSigned())
Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i64, Args[i].first);
else
Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i64, Args[i].first);
// FALL THROUGH
case MVT::i64:
if (GPR_remaining > 0) {
args_to_use.push_back(Args[i].first);
--GPR_remaining;
} else {
MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
Args[i].first, PtrOff, DAG.getSrcValue(NULL)));
}
ArgOffset += 8;
break;
case MVT::f32:
case MVT::f64:
if (FPR_remaining > 0) {
args_to_use.push_back(Args[i].first);
--FPR_remaining;
if (isVarArg) {
SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
Args[i].first, PtrOff, DAG.getSrcValue(NULL));
MemOps.push_back(Store);
// Float varargs are always shadowed in available integer registers
if (GPR_remaining > 0) {
SDOperand Load = DAG.getLoad(MVT::i64, Store, PtrOff, DAG.getSrcValue(NULL));
MemOps.push_back(Load);
args_to_use.push_back(Load);
--GPR_remaining;
}
} else {
// If we have any FPRs remaining, we may also have GPRs remaining.
// Args passed in FPRs also consume an available GPR.
if (GPR_remaining > 0) {
args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i64));
--GPR_remaining;
}
}
} else {
MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
Args[i].first, PtrOff, DAG.getSrcValue(NULL)));
}
ArgOffset += 8;
break;
}
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
}
std::vector<MVT::ValueType> RetVals;
MVT::ValueType RetTyVT = getValueType(RetTy);
if (RetTyVT != MVT::isVoid)
RetVals.push_back(RetTyVT);
RetVals.push_back(MVT::Other);
SDOperand TheCall = SDOperand(DAG.getCall(RetVals,
Chain, Callee, args_to_use), 0);
Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy()));
return std::make_pair(TheCall, Chain);
}
std::pair<SDOperand, SDOperand>
PPC64TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
//vastart just returns the address of the VarArgsFrameIndex slot.
return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64), Chain);
}
std::pair<SDOperand,SDOperand> PPC64TargetLowering::
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
const Type *ArgTy, SelectionDAG &DAG) {
MVT::ValueType ArgVT = getValueType(ArgTy);
SDOperand Result;
if (!isVANext) {
Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList, DAG.getSrcValue(NULL));
} else {
Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList,
DAG.getConstant(8, VAList.getValueType()));
}
return std::make_pair(Result, Chain);
}
std::pair<SDOperand, SDOperand> PPC64TargetLowering::
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
SelectionDAG &DAG) {
assert(0 && "LowerFrameReturnAddress unimplemented");
abort();
}
namespace {
Statistic<>NotLogic("ppc-codegen", "Number of inverted logical ops");
Statistic<>FusedFP("ppc-codegen", "Number of fused fp operations");
//===--------------------------------------------------------------------===//
/// ISel - PPC32 specific code to select PPC32 machine instructions for
/// SelectionDAG operations.
//===--------------------------------------------------------------------===//
class ISel : public SelectionDAGISel {
/// Comment Here.
PPC64TargetLowering PPC64Lowering;
/// ExprMap - As shared expressions are codegen'd, we keep track of which
/// vreg the value is produced in, so we only emit one copy of each compiled
/// tree.
std::map<SDOperand, unsigned> ExprMap;
unsigned GlobalBaseReg;
bool GlobalBaseInitialized;
public:
ISel(TargetMachine &TM) : SelectionDAGISel(PPC64Lowering), PPC64Lowering(TM)
{}
/// runOnFunction - Override this function in order to reset our per-function
/// variables.
virtual bool runOnFunction(Function &Fn) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseInitialized = false;
return SelectionDAGISel::runOnFunction(Fn);
}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
// Codegen the basic block.
Select(DAG.getRoot());
// Clear state used for selection.
ExprMap.clear();
}
unsigned getGlobalBaseReg();
unsigned getConstDouble(double floatVal, unsigned Result);
unsigned SelectSetCR0(SDOperand CC);
unsigned SelectExpr(SDOperand N);
unsigned SelectExprFP(SDOperand N, unsigned Result);
void Select(SDOperand N);
bool SelectAddr(SDOperand N, unsigned& Reg, int& offset);
void SelectBranchCC(SDOperand N);
};
/// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
/// returns zero when the input is not exactly a power of two.
static unsigned ExactLog2(unsigned Val) {
if (Val == 0 || (Val & (Val-1))) return 0;
unsigned Count = 0;
while (Val != 1) {
Val >>= 1;
++Count;
}
return Count;
}
/// getImmediateForOpcode - This method returns a value indicating whether
/// the ConstantSDNode N can be used as an immediate to Opcode. The return
/// values are either 0, 1 or 2. 0 indicates that either N is not a
/// ConstantSDNode, or is not suitable for use by that opcode. A return value
/// of 1 indicates that the constant may be used in normal immediate form. A
/// return value of 2 indicates that the constant may be used in shifted
/// immediate form. A return value of 3 indicates that log base 2 of the
/// constant may be used.
///
static unsigned getImmediateForOpcode(SDOperand N, unsigned Opcode,
unsigned& Imm, bool U = false) {
if (N.getOpcode() != ISD::Constant) return 0;
int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
switch(Opcode) {
default: return 0;
case ISD::ADD:
if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
break;
case ISD::AND:
case ISD::XOR:
case ISD::OR:
if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; }
if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
break;
case ISD::MUL:
case ISD::SUB:
if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
break;
case ISD::SETCC:
if (U && (v >= 0 && v <= 65535)) { Imm = v & 0xFFFF; return 1; }
if (!U && (v <= 32767 && v >= -32768)) { Imm = v & 0xFFFF; return 1; }
break;
case ISD::SDIV:
if ((Imm = ExactLog2(v))) { return 3; }
break;
}
return 0;
}
/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
/// to Condition. If the Condition is unordered or unsigned, the bool argument
/// U is set to true, otherwise it is set to false.
static unsigned getBCCForSetCC(unsigned Condition, bool& U) {
U = false;
switch (Condition) {
default: assert(0 && "Unknown condition!"); abort();
case ISD::SETEQ: return PPC::BEQ;
case ISD::SETNE: return PPC::BNE;
case ISD::SETULT: U = true;
case ISD::SETLT: return PPC::BLT;
case ISD::SETULE: U = true;
case ISD::SETLE: return PPC::BLE;
case ISD::SETUGT: U = true;
case ISD::SETGT: return PPC::BGT;
case ISD::SETUGE: U = true;
case ISD::SETGE: return PPC::BGE;
}
return 0;
}
/// IndexedOpForOp - Return the indexed variant for each of the PowerPC load
/// and store immediate instructions.
static unsigned IndexedOpForOp(unsigned Opcode) {
switch(Opcode) {
default: assert(0 && "Unknown opcode!"); abort();
case PPC::LBZ: return PPC::LBZX; case PPC::STB: return PPC::STBX;
case PPC::LHZ: return PPC::LHZX; case PPC::STH: return PPC::STHX;
case PPC::LHA: return PPC::LHAX; case PPC::STW: return PPC::STWX;
case PPC::LWZ: return PPC::LWZX; case PPC::STD: return PPC::STDX;
case PPC::LD: return PPC::LDX; case PPC::STFS: return PPC::STFSX;
case PPC::LFS: return PPC::LFSX; case PPC::STFD: return PPC::STFDX;
case PPC::LFD: return PPC::LFDX;
}
return 0;
}
}
/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
unsigned ISel::getGlobalBaseReg() {
if (!GlobalBaseInitialized) {
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = BB->getParent()->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
GlobalBaseReg = MakeReg(MVT::i64);
BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR);
GlobalBaseInitialized = true;
}
return GlobalBaseReg;
}
/// getConstDouble - Loads a floating point value into a register, via the
/// Constant Pool. Optionally takes a register in which to load the value.
unsigned ISel::getConstDouble(double doubleVal, unsigned Result=0) {
unsigned Tmp1 = MakeReg(MVT::i64);
if (0 == Result) Result = MakeReg(MVT::f64);
MachineConstantPool *CP = BB->getParent()->getConstantPool();
ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, doubleVal);
unsigned CPI = CP->getConstantPoolIndex(CFP);
BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
.addConstantPoolIndex(CPI);
BuildMI(BB, PPC::LFD, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
return Result;
}
unsigned ISel::SelectSetCR0(SDOperand CC) {
unsigned Opc, Tmp1, Tmp2;
static const unsigned CompareOpcodes[] =
{ PPC::FCMPU, PPC::FCMPU, PPC::CMPW, PPC::CMPLW };
// If the first operand to the select is a SETCC node, then we can fold it
// into the branch that selects which value to return.
SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val);
if (SetCC && CC.getOpcode() == ISD::SETCC) {
bool U;
Opc = getBCCForSetCC(SetCC->getCondition(), U);
Tmp1 = SelectExpr(SetCC->getOperand(0));
// Pass the optional argument U to getImmediateForOpcode for SETCC,
// so that it knows whether the SETCC immediate range is signed or not.
if (1 == getImmediateForOpcode(SetCC->getOperand(1), ISD::SETCC,
Tmp2, U)) {
if (U)
BuildMI(BB, PPC::CMPLWI, 2, PPC::CR0).addReg(Tmp1).addImm(Tmp2);
else
BuildMI(BB, PPC::CMPWI, 2, PPC::CR0).addReg(Tmp1).addSImm(Tmp2);
} else {
bool IsInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
unsigned CompareOpc = CompareOpcodes[2 * IsInteger + U];
Tmp2 = SelectExpr(SetCC->getOperand(1));
BuildMI(BB, CompareOpc, 2, PPC::CR0).addReg(Tmp1).addReg(Tmp2);
}
} else {
Tmp1 = SelectExpr(CC);
BuildMI(BB, PPC::CMPLWI, 2, PPC::CR0).addReg(Tmp1).addImm(0);
Opc = PPC::BNE;
}
return Opc;
}
/// Check to see if the load is a constant offset from a base register
bool ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset)
{
unsigned imm = 0, opcode = N.getOpcode();
if (N.getOpcode() == ISD::ADD) {
Reg = SelectExpr(N.getOperand(0));
if (1 == getImmediateForOpcode(N.getOperand(1), opcode, imm)) {
offset = imm;
return false;
}
offset = SelectExpr(N.getOperand(1));
return true;
}
Reg = SelectExpr(N);
offset = 0;
return false;
}
void ISel::SelectBranchCC(SDOperand N)
{
assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???");
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
// Get the MBB we will fall through to so that we can hand it off to the
// branch selection pass as an argument to the PPC::COND_BRANCH pseudo op.
//ilist<MachineBasicBlock>::iterator It = BB;
//MachineBasicBlock *Fallthrough = ++It;
Select(N.getOperand(0)); //chain
unsigned Opc = SelectSetCR0(N.getOperand(1));
// FIXME: Use this once we have something approximating two-way branches
// We cannot currently use this in case the ISel hands us something like
// BRcc MBBx
// BR MBBy
// since the fallthrough basic block for the conditional branch does not start
// with the unconditional branch (it is skipped over).
//BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opc)
// .addMBB(Dest).addMBB(Fallthrough);
BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(Dest);
return;
}
unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
{
unsigned Tmp1, Tmp2, Tmp3;
unsigned Opc = 0;
SDNode *Node = N.Val;
MVT::ValueType DestType = N.getValueType();
unsigned opcode = N.getOpcode();
switch (opcode) {
default:
Node->dump();
assert(0 && "Node not handled!\n");
case ISD::SELECT: {
// Attempt to generate FSEL. We can do this whenever we have an FP result,
// and an FP comparison in the SetCC node.
SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(N.getOperand(0).Val);
if (SetCC && N.getOperand(0).getOpcode() == ISD::SETCC &&
!MVT::isInteger(SetCC->getOperand(0).getValueType()) &&
SetCC->getCondition() != ISD::SETEQ &&
SetCC->getCondition() != ISD::SETNE) {
MVT::ValueType VT = SetCC->getOperand(0).getValueType();
Tmp1 = SelectExpr(SetCC->getOperand(0)); // Val to compare against
unsigned TV = SelectExpr(N.getOperand(1)); // Use if TRUE
unsigned FV = SelectExpr(N.getOperand(2)); // Use if FALSE
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1));
if (CN && (CN->isExactlyValue(-0.0) || CN->isExactlyValue(0.0))) {
switch(SetCC->getCondition()) {
default: assert(0 && "Invalid FSEL condition"); abort();
case ISD::SETULT:
case ISD::SETLT:
BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(FV).addReg(TV);
return Result;
case ISD::SETUGE:
case ISD::SETGE:
BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(TV).addReg(FV);
return Result;
case ISD::SETUGT:
case ISD::SETGT: {
Tmp2 = MakeReg(VT);
BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1);
BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(FV).addReg(TV);
return Result;
}
case ISD::SETULE:
case ISD::SETLE: {
Tmp2 = MakeReg(VT);
BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1);
BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(TV).addReg(FV);
return Result;
}
}
} else {
Opc = (MVT::f64 == VT) ? PPC::FSUB : PPC::FSUBS;
Tmp2 = SelectExpr(SetCC->getOperand(1));
Tmp3 = MakeReg(VT);
switch(SetCC->getCondition()) {
default: assert(0 && "Invalid FSEL condition"); abort();
case ISD::SETULT:
case ISD::SETLT:
BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV);
return Result;
case ISD::SETUGE:
case ISD::SETGE:
BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV);
return Result;
case ISD::SETUGT:
case ISD::SETGT:
BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV);
return Result;
case ISD::SETULE:
case ISD::SETLE:
BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV);
return Result;
}
}
assert(0 && "Should never get here");
return 0;
}
unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE
unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE
Opc = SelectSetCR0(N.getOperand(0));
// Create an iterator with which to insert the MBB for copying the false
// value and the MBB to hold the PHI instruction for this SetCC.
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY cr0, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(sinkMBB);
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
.addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
return Result;
}
case ISD::FNEG:
if (!NoExcessFPPrecision &&
ISD::ADD == N.getOperand(0).getOpcode() &&
N.getOperand(0).Val->hasOneUse() &&
ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() &&
N.getOperand(0).getOperand(0).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(0).getOperand(1));
Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
} else if (!NoExcessFPPrecision &&
ISD::SUB == N.getOperand(0).getOpcode() &&
N.getOperand(0).Val->hasOneUse() &&
ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() &&
N.getOperand(0).getOperand(0).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(0).getOperand(1));
Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
} else if (ISD::FABS == N.getOperand(0).getOpcode()) {
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, PPC::FNABS, 1, Result).addReg(Tmp1);
} else {
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FNEG, 1, Result).addReg(Tmp1);
}
return Result;
case ISD::FABS:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FABS, 1, Result).addReg(Tmp1);
return Result;
case ISD::FP_ROUND:
assert (DestType == MVT::f32 &&
N.getOperand(0).getValueType() == MVT::f64 &&
"only f64 to f32 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1);
return Result;
case ISD::FP_EXTEND:
assert (DestType == MVT::f64 &&
N.getOperand(0).getValueType() == MVT::f32 &&
"only f32 to f64 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
return Result;
case ISD::CopyFromReg:
if (Result == 1)
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
Tmp1 = dyn_cast<RegSDNode>(Node)->getReg();
BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
return Result;
case ISD::ConstantFP: {
ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N);
Result = getConstDouble(CN->getValue(), Result);
return Result;
}
case ISD::ADD:
if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL &&
N.getOperand(0).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(1));
Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
return Result;
}
Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::SUB:
if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL &&
N.getOperand(0).Val->hasOneUse()) {
++FusedFP; // Statistic
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
Tmp3 = SelectExpr(N.getOperand(1));
Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS;
BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
return Result;
}
Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::MUL:
case ISD::SDIV:
switch( opcode ) {
case ISD::MUL: Opc = DestType == MVT::f64 ? PPC::FMUL : PPC::FMULS; break;
case ISD::SDIV: Opc = DestType == MVT::f64 ? PPC::FDIV : PPC::FDIVS; break;
};
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: {
bool IsUnsigned = (ISD::UINT_TO_FP == opcode);
Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
Tmp2 = MakeReg(MVT::f64); // temp reg to load the integer value into
Tmp3 = MakeReg(MVT::i64); // temp reg to hold the conversion constant
unsigned ConstF = MakeReg(MVT::f64); // temp reg to hold the fp constant
int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8);
MachineConstantPool *CP = BB->getParent()->getConstantPool();
// FIXME: pull this FP constant generation stuff out into something like
// the simple ISel's getReg.
if (IsUnsigned) {
addFrameReference(BuildMI(BB, PPC::STD, 3).addReg(Tmp1), FrameIdx);
addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx);
BuildMI(BB, PPC::FCFID, 1, Result).addReg(Tmp2);
} else {
ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52);
unsigned CPI = CP->getConstantPoolIndex(CFP);
// Load constant fp value
unsigned Tmp4 = MakeReg(MVT::i32);
unsigned TmpL = MakeReg(MVT::i32);
BuildMI(BB, PPC::LOADHiAddr, 2, Tmp4).addReg(getGlobalBaseReg())
.addConstantPoolIndex(CPI);
BuildMI(BB, PPC::LFD, 2, ConstF).addConstantPoolIndex(CPI).addReg(Tmp4);
// Store the hi & low halves of the fp value, currently in int regs
BuildMI(BB, PPC::LIS, 1, Tmp3).addSImm(0x4330);
addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp3), FrameIdx);
BuildMI(BB, PPC::XORIS, 2, TmpL).addReg(Tmp1).addImm(0x8000);
addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(TmpL), FrameIdx, 4);
addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx);
// Generate the return value with a subtract
BuildMI(BB, PPC::FSUB, 2, Result).addReg(Tmp2).addReg(ConstF);
}
return Result;
}
}
assert(0 && "Should never get here");
return 0;
}
unsigned ISel::SelectExpr(SDOperand N) {
unsigned Result;
unsigned Tmp1, Tmp2, Tmp3;
unsigned Opc = 0;
unsigned opcode = N.getOpcode();
SDNode *Node = N.Val;
MVT::ValueType DestType = N.getValueType();
unsigned &Reg = ExprMap[N];
if (Reg) return Reg;
switch (N.getOpcode()) {
default:
Reg = Result = (N.getValueType() != MVT::Other) ?
MakeReg(N.getValueType()) : 1;
break;
case ISD::TAILCALL:
case ISD::CALL:
// If this is a call instruction, make sure to prepare ALL of the result
// values as well as the chain.
if (Node->getNumValues() == 1)
Reg = Result = 1; // Void call, just a chain.
else {
Result = MakeReg(Node->getValueType(0));
ExprMap[N.getValue(0)] = Result;
for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
}
break;
}
if (ISD::CopyFromReg == opcode)
DestType = N.getValue(0).getValueType();
if (DestType == MVT::f64 || DestType == MVT::f32)
if (ISD::LOAD != opcode && ISD::EXTLOAD != opcode && ISD::UNDEF != opcode)
return SelectExprFP(N, Result);
switch (opcode) {
default:
Node->dump();
assert(0 && "Node not handled!\n");
case ISD::UNDEF:
BuildMI(BB, PPC::IMPLICIT_DEF, 0, Result);
return Result;
case ISD::DYNAMIC_STACKALLOC:
// Generate both result values. FIXME: Need a better commment here?
if (Result != 1)
ExprMap[N.getValue(1)] = 1;
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
// FIXME: We are currently ignoring the requested alignment for handling
// greater than the stack alignment. This will need to be revisited at some
// point. Align = N.getOperand(2);
if (!isa<ConstantSDNode>(N.getOperand(2)) ||
cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
std::cerr << "Cannot allocate stack object with greater alignment than"
<< " the stack alignment yet!";
abort();
}
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
// Subtract size from stack pointer, thereby allocating some space.
BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1);
// Put a pointer to the space into the result register by copying the SP
BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1);
return Result;
case ISD::ConstantPool:
Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex();
Tmp2 = MakeReg(MVT::i64);
BuildMI(BB, PPC::LOADHiAddr, 2, Tmp2).addReg(getGlobalBaseReg())
.addConstantPoolIndex(Tmp1);
BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1);
return Result;
case ISD::FrameIndex:
Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false);
return Result;
case ISD::GlobalAddress: {
GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
Tmp1 = MakeReg(MVT::i64);
BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
.addGlobalAddress(GV);
if (GV->hasWeakLinkage() || GV->isExternal()) {
BuildMI(BB, PPC::LD, 2, Result).addGlobalAddress(GV).addReg(Tmp1);
} else {
BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV);
}
return Result;
}
case ISD::LOAD:
case ISD::EXTLOAD:
case ISD::ZEXTLOAD:
case ISD::SEXTLOAD: {
MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ?
Node->getValueType(0) : cast<MVTSDNode>(Node)->getExtraValueType();
bool sext = (ISD::SEXTLOAD == opcode);
// Make sure we generate both values.
if (Result != 1)
ExprMap[N.getValue(1)] = 1; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0);
SDOperand Address = N.getOperand(1);
Select(Chain);
switch (TypeBeingLoaded) {
default: Node->dump(); assert(0 && "Cannot load this type!");
case MVT::i1: Opc = PPC::LBZ; break;
case MVT::i8: Opc = PPC::LBZ; break;
case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break;
case MVT::i32: Opc = sext ? PPC::LWA : PPC::LWZ; break;
case MVT::i64: Opc = PPC::LD; break;
case MVT::f32: Opc = PPC::LFS; break;
case MVT::f64: Opc = PPC::LFD; break;
}
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
Tmp1 = MakeReg(MVT::i64);
int CPI = CP->getIndex();
BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
.addConstantPoolIndex(CPI);
BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
}
else if(Address.getOpcode() == ISD::FrameIndex) {
Tmp1 = cast<FrameIndexSDNode>(Address)->getIndex();
addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1);
} else {
int offset;
bool idx = SelectAddr(Address, Tmp1, offset);
if (idx) {
Opc = IndexedOpForOp(Opc);
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset);
} else {
BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1);
}
}
return Result;
}
case ISD::TAILCALL:
case ISD::CALL: {
unsigned GPR_idx = 0, FPR_idx = 0;
static const unsigned GPR[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
// Lower the chain for this call.
Select(N.getOperand(0));
ExprMap[N.getValue(Node->getNumValues()-1)] = 1;
MachineInstr *CallMI;
// Emit the correct call instruction based on the type of symbol called.
if (GlobalAddressSDNode *GASD =
dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(),
true);
} else if (ExternalSymbolSDNode *ESSDN =
dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(),
true);
} else {
Tmp1 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1);
BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0)
.addReg(PPC::R12);
}
// Load the register args to virtual regs
std::vector<unsigned> ArgVR;
for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
ArgVR.push_back(SelectExpr(N.getOperand(i)));
// Copy the virtual registers into the appropriate argument register
for(int i = 0, e = ArgVR.size(); i < e; ++i) {
switch(N.getOperand(i+2).getValueType()) {
default: Node->dump(); assert(0 && "Unknown value type for call");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
assert(GPR_idx < 8 && "Too many int args");
if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) {
BuildMI(BB, PPC::OR,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
++GPR_idx;
break;
case MVT::f64:
case MVT::f32:
assert(FPR_idx < 13 && "Too many fp args");
BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgVR[i]);
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
++FPR_idx;
break;
}
}
// Put the call instruction in the correct place in the MachineBasicBlock
BB->push_back(CallMI);
switch (Node->getValueType(0)) {
default: assert(0 && "Unknown value type for call result!");
case MVT::Other: return 1;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3);
break;
case MVT::f32:
case MVT::f64:
BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1);
break;
}
return Result+N.ResNo;
}
case ISD::SIGN_EXTEND:
case ISD::SIGN_EXTEND_INREG:
Tmp1 = SelectExpr(N.getOperand(0));
switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break;
case MVT::i32:
BuildMI(BB, PPC::EXTSW, 1, Result).addReg(Tmp1);
break;
case MVT::i16:
BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1);
break;
case MVT::i8:
BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1);
break;
case MVT::i1:
BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp1).addSImm(0);
break;
}
return Result;
case ISD::CopyFromReg:
if (Result == 1)
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
Tmp1 = dyn_cast<RegSDNode>(Node)->getReg();
BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1);
return Result;
case ISD::SHL:
Tmp1 = SelectExpr(N.getOperand(0));
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
Tmp2 = CN->getValue() & 0x3F;
BuildMI(BB, PPC::RLDICR, 3, Result).addReg(Tmp1).addImm(Tmp2)
.addImm(63-Tmp2);
} else {
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::SLD, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::SRL:
Tmp1 = SelectExpr(N.getOperand(0));
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
Tmp2 = CN->getValue() & 0x3F;
BuildMI(BB, PPC::RLDICL, 3, Result).addReg(Tmp1).addImm(64-Tmp2)
.addImm(Tmp2);
} else {
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::SRD, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::SRA:
Tmp1 = SelectExpr(N.getOperand(0));
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
Tmp2 = CN->getValue() & 0x3F;
BuildMI(BB, PPC::SRADI, 2, Result).addReg(Tmp1).addImm(Tmp2);
} else {
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::SRAD, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::ADD:
Tmp1 = SelectExpr(N.getOperand(0));
switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
default: assert(0 && "unhandled result code");
case 0: // No immediate
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
case 1: // Low immediate
BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
break;
case 2: // Shifted immediate
BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2);
break;
}
return Result;
case ISD::AND:
case ISD::OR:
Tmp1 = SelectExpr(N.getOperand(0));
switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
default: assert(0 && "unhandled result code");
case 0: // No immediate
Tmp2 = SelectExpr(N.getOperand(1));
switch (opcode) {
case ISD::AND: Opc = PPC::AND; break;
case ISD::OR: Opc = PPC::OR; break;
}
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
case 1: // Low immediate
switch (opcode) {
case ISD::AND: Opc = PPC::ANDIo; break;
case ISD::OR: Opc = PPC::ORI; break;
}
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
break;
case 2: // Shifted immediate
switch (opcode) {
case ISD::AND: Opc = PPC::ANDISo; break;
case ISD::OR: Opc = PPC::ORIS; break;
}
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
break;
}
return Result;
case ISD::XOR: {
// Check for EQV: xor, (xor a, -1), b
if (N.getOperand(0).getOpcode() == ISD::XOR &&
N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->isAllOnesValue()) {
++NotLogic;
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
}
// Check for NOT, NOR, and NAND: xor (copy, or, and), -1
if (N.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1))->isAllOnesValue()) {
++NotLogic;
switch(N.getOperand(0).getOpcode()) {
case ISD::OR:
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
case ISD::AND:
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
default:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1);
break;
}
return Result;
}
Tmp1 = SelectExpr(N.getOperand(0));
switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
default: assert(0 && "unhandled result code");
case 0: // No immediate
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
break;
case 1: // Low immediate
BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(Tmp2);
break;
case 2: // Shifted immediate
BuildMI(BB, PPC::XORIS, 2, Result).addReg(Tmp1).addImm(Tmp2);
break;
}
return Result;
}
case ISD::SUB:
Tmp2 = SelectExpr(N.getOperand(1));
if (1 == getImmediateForOpcode(N.getOperand(0), opcode, Tmp1))
BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1);
else {
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1);
}
return Result;
case ISD::MUL:
Tmp1 = SelectExpr(N.getOperand(0));
if (1 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp2))
BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
else {
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, PPC::MULLD, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::SDIV:
case ISD::UDIV:
if (3 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp3)) {
Tmp1 = MakeReg(MVT::i64);
Tmp2 = SelectExpr(N.getOperand(0));
BuildMI(BB, PPC::SRADI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3);
BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1);
return Result;
}
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW;
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT: {
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = MakeReg(MVT::f64);
BuildMI(BB, PPC::FCTIDZ, 1, Tmp2).addReg(Tmp1);
int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8);
addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(Tmp2), FrameIdx);
addFrameReference(BuildMI(BB, PPC::LD, 2, Result), FrameIdx);
return Result;
}
case ISD::SETCC:
if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) {
Opc = SelectSetCR0(N);
unsigned TrueValue = MakeReg(MVT::i32);
BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
unsigned FalseValue = MakeReg(MVT::i32);
BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
// Create an iterator with which to insert the MBB for copying the false
// value and the MBB to hold the PHI instruction for this SetCC.
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// cmpTY cr0, r1, r2
// %TrueValue = li 1
// bCC sinkMBB
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(sinkMBB);
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = li 0
// fallthrough
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
.addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
return Result;
}
assert(0 && "Is this legal?");
return 0;
case ISD::SELECT: {
unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE
unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE
Opc = SelectSetCR0(N.getOperand(0));
// Create an iterator with which to insert the MBB for copying the false
// value and the MBB to hold the PHI instruction for this SetCC.
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY cr0, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(sinkMBB);
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
.addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
// FIXME: Select i64?
return Result;
}
case ISD::Constant:
switch (N.getValueType()) {
default: assert(0 && "Cannot use constants of this type!");
case MVT::i1:
BuildMI(BB, PPC::LI, 1, Result)
.addSImm(!cast<ConstantSDNode>(N)->isNullValue());
break;
case MVT::i32:
{
int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
if (v < 32768 && v >= -32768) {
BuildMI(BB, PPC::LI, 1, Result).addSImm(v);
} else {
Tmp1 = MakeReg(MVT::i32);
BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16);
BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF);
}
}
}
return Result;
}
return 0;
}
void ISel::Select(SDOperand N) {
unsigned Tmp1, Tmp2, Opc;
unsigned opcode = N.getOpcode();
if (!ExprMap.insert(std::make_pair(N, 1)).second)
return; // Already selected.
SDNode *Node = N.Val;
switch (Node->getOpcode()) {
default:
Node->dump(); std::cerr << "\n";
assert(0 && "Node not handled yet!");
case ISD::EntryToken: return; // Noop
case ISD::TokenFactor:
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Select(Node->getOperand(i));
return;
case ISD::CALLSEQ_START:
case ISD::CALLSEQ_END:
Select(N.getOperand(0));
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
Opc = N.getOpcode() == ISD::CALLSEQ_START ? PPC::ADJCALLSTACKDOWN :
PPC::ADJCALLSTACKUP;
BuildMI(BB, Opc, 1).addImm(Tmp1);
return;
case ISD::BR: {
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
Select(N.getOperand(0));
BuildMI(BB, PPC::B, 1).addMBB(Dest);
return;
}
case ISD::BRCOND:
SelectBranchCC(N);
return;
case ISD::CopyToReg:
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = cast<RegSDNode>(N)->getReg();
if (Tmp1 != Tmp2) {
if (N.getOperand(1).getValueType() == MVT::f64 ||
N.getOperand(1).getValueType() == MVT::f32)
BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1);
else
BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
}
return;
case ISD::ImplicitDef:
Select(N.getOperand(0));
BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast<RegSDNode>(N)->getReg());
return;
case ISD::RET:
switch (N.getNumOperands()) {
default:
assert(0 && "Unknown return instruction!");
case 3:
assert(N.getOperand(1).getValueType() == MVT::i32 &&
N.getOperand(2).getValueType() == MVT::i32 &&
"Unknown two-register value!");
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = SelectExpr(N.getOperand(2));
BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2);
BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1);
break;
case 2:
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
switch (N.getOperand(1).getValueType()) {
default:
assert(0 && "Unknown return type!");
case MVT::f64:
case MVT::f32:
BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1);
break;
case MVT::i32:
BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
break;
}
case 1:
Select(N.getOperand(0));
break;
}
BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction
return;
case ISD::TRUNCSTORE:
case ISD::STORE:
{
SDOperand Chain = N.getOperand(0);
SDOperand Value = N.getOperand(1);
SDOperand Address = N.getOperand(2);
Select(Chain);
Tmp1 = SelectExpr(Value); //value
if (opcode == ISD::STORE) {
switch(Value.getValueType()) {
default: assert(0 && "unknown Type in store");
case MVT::i64: Opc = PPC::STD; break;
case MVT::f64: Opc = PPC::STFD; break;
case MVT::f32: Opc = PPC::STFS; break;
}
} else { //ISD::TRUNCSTORE
switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
default: assert(0 && "unknown Type in store");
case MVT::i1: //FIXME: DAG does not promote this load
case MVT::i8: Opc= PPC::STB; break;
case MVT::i16: Opc = PPC::STH; break;
case MVT::i32: Opc = PPC::STW; break;
}
}
if(Address.getOpcode() == ISD::FrameIndex)
{
Tmp2 = cast<FrameIndexSDNode>(Address)->getIndex();
addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2);
}
else
{
int offset;
bool idx = SelectAddr(Address, Tmp2, offset);
if (idx) {
Opc = IndexedOpForOp(Opc);
BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset);
} else {
BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2);
}
}
return;
}
case ISD::EXTLOAD:
case ISD::SEXTLOAD:
case ISD::ZEXTLOAD:
case ISD::LOAD:
case ISD::CopyFromReg:
case ISD::TAILCALL:
case ISD::CALL:
case ISD::DYNAMIC_STACKALLOC:
ExprMap.erase(N);
SelectExpr(N);
return;
}
assert(0 && "Should not be reached!");
}
/// createPPC32PatternInstructionSelector - This pass converts an LLVM function
/// into a machine code representation using pattern matching and a machine
/// description file.
///
FunctionPass *llvm::createPPC64ISelPattern(TargetMachine &TM) {
return new ISel(TM);
}