llvm-6502/lib/CodeGen/MachineCSE.cpp

508 lines
17 KiB
C++
Raw Normal View History

//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs global common subexpression elimination on machine
// instructions using a scoped hash table based value numbering scheme. It
// must be run while the machine function is still in SSA form.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-cse"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
STATISTIC(NumCoalesces, "Number of copies coalesced");
STATISTIC(NumCSEs, "Number of common subexpression eliminated");
STATISTIC(NumPhysCSEs, "Number of phyreg defining common subexpr eliminated");
namespace {
class MachineCSE : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
AliasAnalysis *AA;
MachineDominatorTree *DT;
MachineRegisterInfo *MRI;
public:
static char ID; // Pass identification
MachineCSE() : MachineFunctionPass(&ID), LookAheadLimit(5), CurrVN(0) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<AliasAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
private:
const unsigned LookAheadLimit;
typedef ScopedHashTableScope<MachineInstr*, unsigned,
MachineInstrExpressionTrait> ScopeType;
DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
SmallVector<MachineInstr*, 64> Exps;
unsigned CurrVN;
bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
bool isPhysDefTriviallyDead(unsigned Reg,
MachineBasicBlock::const_iterator I,
MachineBasicBlock::const_iterator E) const ;
bool hasLivePhysRegDefUse(const MachineInstr *MI,
const MachineBasicBlock *MBB,
unsigned &PhysDef) const;
bool PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
unsigned PhysDef) const;
bool isCSECandidate(MachineInstr *MI);
bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
MachineInstr *CSMI, MachineInstr *MI);
void EnterScope(MachineBasicBlock *MBB);
void ExitScope(MachineBasicBlock *MBB);
bool ProcessBlock(MachineBasicBlock *MBB);
void ExitScopeIfDone(MachineDomTreeNode *Node,
DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
bool PerformCSE(MachineDomTreeNode *Node);
};
} // end anonymous namespace
char MachineCSE::ID = 0;
INITIALIZE_PASS(MachineCSE, "machine-cse",
"Machine Common Subexpression Elimination", false, false);
FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
MachineBasicBlock *MBB) {
bool Changed = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
if (!MRI->hasOneUse(Reg))
// Only coalesce single use copies. This ensure the copy will be
// deleted.
continue;
MachineInstr *DefMI = MRI->getVRegDef(Reg);
if (DefMI->getParent() != MBB)
continue;
if (!DefMI->isCopy())
continue;
unsigned SrcReg = DefMI->getOperand(1).getReg();
if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
continue;
if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
continue;
const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC);
if (!NewRC)
continue;
DEBUG(dbgs() << "Coalescing: " << *DefMI);
DEBUG(dbgs() << "*** to: " << *MI);
MO.setReg(SrcReg);
MRI->clearKillFlags(SrcReg);
if (NewRC != SRC)
MRI->setRegClass(SrcReg, NewRC);
DefMI->eraseFromParent();
++NumCoalesces;
Changed = true;
}
return Changed;
}
bool
MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
MachineBasicBlock::const_iterator I,
MachineBasicBlock::const_iterator E) const {
unsigned LookAheadLeft = LookAheadLimit;
while (LookAheadLeft) {
// Skip over dbg_value's.
while (I != E && I->isDebugValue())
++I;
if (I == E)
// Reached end of block, register is obviously dead.
return true;
bool SeenDef = false;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = I->getOperand(i);
if (!MO.isReg() || !MO.getReg())
continue;
if (!TRI->regsOverlap(MO.getReg(), Reg))
continue;
if (MO.isUse())
// Found a use!
return false;
SeenDef = true;
}
if (SeenDef)
// See a def of Reg (or an alias) before encountering any use, it's
// trivially dead.
return true;
--LookAheadLeft;
++I;
}
return false;
}
/// hasLivePhysRegDefUse - Return true if the specified instruction read / write
/// physical registers (except for dead defs of physical registers). It also
/// returns the physical register def by reference if it's the only one and the
/// instruction does not uses a physical register.
bool MachineCSE::hasLivePhysRegDefUse(const MachineInstr *MI,
const MachineBasicBlock *MBB,
unsigned &PhysDef) const {
PhysDef = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (TargetRegisterInfo::isVirtualRegister(Reg))
continue;
if (MO.isUse()) {
// Can't touch anything to read a physical register.
PhysDef = 0;
return true;
}
if (MO.isDead())
// If the def is dead, it's ok.
continue;
// Ok, this is a physical register def that's not marked "dead". That's
// common since this pass is run before livevariables. We can scan
// forward a few instructions and check if it is obviously dead.
if (PhysDef) {
// Multiple physical register defs. These are rare, forget about it.
PhysDef = 0;
return true;
}
PhysDef = Reg;
}
if (PhysDef) {
MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
return true;
}
return false;
}
bool MachineCSE::PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
unsigned PhysDef) const {
// For now conservatively returns false if the common subexpression is
// not in the same basic block as the given instruction.
MachineBasicBlock *MBB = MI->getParent();
if (CSMI->getParent() != MBB)
return false;
MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
MachineBasicBlock::const_iterator E = MI;
unsigned LookAheadLeft = LookAheadLimit;
while (LookAheadLeft) {
// Skip over dbg_value's.
while (I != E && I->isDebugValue())
++I;
if (I == E)
return true;
if (I->modifiesRegister(PhysDef, TRI))
return false;
--LookAheadLeft;
++I;
}
return false;
}
bool MachineCSE::isCSECandidate(MachineInstr *MI) {
if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
return false;
// Ignore copies.
if (MI->isCopyLike())
return false;
// Ignore stuff that we obviously can't move.
const TargetInstrDesc &TID = MI->getDesc();
if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
TID.hasUnmodeledSideEffects())
return false;
if (TID.mayLoad()) {
// Okay, this instruction does a load. As a refinement, we allow the target
// to decide whether the loaded value is actually a constant. If so, we can
// actually use it as a load.
if (!MI->isInvariantLoad(AA))
// FIXME: we should be able to hoist loads with no other side effects if
// there are no other instructions which can change memory in this loop.
// This is a trivial form of alias analysis.
return false;
}
return true;
}
/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
/// common expression that defines Reg.
bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
MachineInstr *CSMI, MachineInstr *MI) {
// FIXME: Heuristics that works around the lack the live range splitting.
// Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
// immediate predecessor. We don't want to increase register pressure and end up
// causing other computation to be spilled.
if (MI->getDesc().isAsCheapAsAMove()) {
MachineBasicBlock *CSBB = CSMI->getParent();
MachineBasicBlock *BB = MI->getParent();
if (CSBB != BB &&
find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
return false;
}
// Heuristics #2: If the expression doesn't not use a vr and the only use
// of the redundant computation are copies, do not cse.
bool HasVRegUse = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() && MO.getReg() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
HasVRegUse = true;
break;
}
}
if (!HasVRegUse) {
bool HasNonCopyUse = false;
for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
E = MRI->use_nodbg_end(); I != E; ++I) {
MachineInstr *Use = &*I;
// Ignore copies.
if (!Use->isCopyLike()) {
HasNonCopyUse = true;
break;
}
}
if (!HasNonCopyUse)
return false;
}
// Heuristics #3: If the common subexpression is used by PHIs, do not reuse
// it unless the defined value is already used in the BB of the new use.
bool HasPHI = false;
SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg),
E = MRI->use_nodbg_end(); I != E; ++I) {
MachineInstr *Use = &*I;
HasPHI |= Use->isPHI();
CSBBs.insert(Use->getParent());
}
if (!HasPHI)
return true;
return CSBBs.count(MI->getParent());
}
void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
ScopeType *Scope = new ScopeType(VNT);
ScopeMap[MBB] = Scope;
}
void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
assert(SI != ScopeMap.end());
ScopeMap.erase(SI);
delete SI->second;
}
bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
bool Changed = false;
SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
MachineInstr *MI = &*I;
++I;
if (!isCSECandidate(MI))
continue;
bool DefPhys = false;
bool FoundCSE = VNT.count(MI);
if (!FoundCSE) {
// Look for trivial copy coalescing opportunities.
if (PerformTrivialCoalescing(MI, MBB)) {
// After coalescing MI itself may become a copy.
if (MI->isCopyLike())
continue;
FoundCSE = VNT.count(MI);
}
}
// FIXME: commute commutable instructions?
// If the instruction defines a physical register and the value *may* be
// used, then it's not safe to replace it with a common subexpression.
unsigned PhysDef = 0;
if (FoundCSE && hasLivePhysRegDefUse(MI, MBB, PhysDef)) {
FoundCSE = false;
// ... Unless the CS is local and it also defines the physical register
// which is not clobbered in between.
if (PhysDef) {
unsigned CSVN = VNT.lookup(MI);
MachineInstr *CSMI = Exps[CSVN];
if (PhysRegDefReaches(CSMI, MI, PhysDef)) {
FoundCSE = true;
DefPhys = true;
}
}
}
if (!FoundCSE) {
VNT.insert(MI, CurrVN++);
Exps.push_back(MI);
continue;
}
// Found a common subexpression, eliminate it.
unsigned CSVN = VNT.lookup(MI);
MachineInstr *CSMI = Exps[CSVN];
DEBUG(dbgs() << "Examining: " << *MI);
DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
// Check if it's profitable to perform this CSE.
bool DoCSE = true;
unsigned NumDefs = MI->getDesc().getNumDefs();
for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned OldReg = MO.getReg();
unsigned NewReg = CSMI->getOperand(i).getReg();
if (OldReg == NewReg)
continue;
assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
TargetRegisterInfo::isVirtualRegister(NewReg) &&
"Do not CSE physical register defs!");
if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
DoCSE = false;
break;
}
CSEPairs.push_back(std::make_pair(OldReg, NewReg));
--NumDefs;
}
// Actually perform the elimination.
if (DoCSE) {
for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
MRI->clearKillFlags(CSEPairs[i].second);
}
MI->eraseFromParent();
++NumCSEs;
if (DefPhys)
++NumPhysCSEs;
} else {
DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
VNT.insert(MI, CurrVN++);
Exps.push_back(MI);
}
CSEPairs.clear();
}
return Changed;
}
/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
/// dominator tree node if its a leaf or all of its children are done. Walk
/// up the dominator tree to destroy ancestors which are now done.
void
MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
if (OpenChildren[Node])
return;
// Pop scope.
ExitScope(Node->getBlock());
// Now traverse upwards to pop ancestors whose offsprings are all done.
while (MachineDomTreeNode *Parent = ParentMap[Node]) {
unsigned Left = --OpenChildren[Parent];
if (Left != 0)
break;
ExitScope(Parent->getBlock());
Node = Parent;
}
}
bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
SmallVector<MachineDomTreeNode*, 32> Scopes;
SmallVector<MachineDomTreeNode*, 8> WorkList;
DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
// Perform a DFS walk to determine the order of visit.
WorkList.push_back(Node);
do {
Node = WorkList.pop_back_val();
Scopes.push_back(Node);
const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
unsigned NumChildren = Children.size();
OpenChildren[Node] = NumChildren;
for (unsigned i = 0; i != NumChildren; ++i) {
MachineDomTreeNode *Child = Children[i];
ParentMap[Child] = Node;
WorkList.push_back(Child);
}
} while (!WorkList.empty());
// Now perform CSE.
bool Changed = false;
for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
MachineDomTreeNode *Node = Scopes[i];
MachineBasicBlock *MBB = Node->getBlock();
EnterScope(MBB);
Changed |= ProcessBlock(MBB);
// If it's a leaf node, it's done. Traverse upwards to pop ancestors.
ExitScopeIfDone(Node, OpenChildren, ParentMap);
}
return Changed;
}
bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getTarget().getInstrInfo();
TRI = MF.getTarget().getRegisterInfo();
MRI = &MF.getRegInfo();
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<MachineDominatorTree>();
return PerformCSE(DT->getRootNode());
}