llvm-6502/lib/CodeGen/MachineFunction.cpp

477 lines
15 KiB
C++
Raw Normal View History

//===-- MachineFunction.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect native machine code information for a function. This allows
// target-specific information about the generated code to be stored with each
// function.
//
//===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#include <fstream>
#include <sstream>
using namespace llvm;
static AnnotationID MF_AID(
AnnotationManager::getID("CodeGen::MachineCodeForFunction"));
// Out of line virtual function to home classes.
void MachineFunctionPass::virtfn() {}
namespace {
struct VISIBILITY_HIDDEN Printer : public MachineFunctionPass {
std::ostream *OS;
const std::string Banner;
Printer (std::ostream *_OS, const std::string &_Banner) :
OS (_OS), Banner (_Banner) { }
const char *getPassName() const { return "MachineFunction Printer"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
bool runOnMachineFunction(MachineFunction &MF) {
(*OS) << Banner;
MF.print (*OS);
return false;
}
};
}
/// Returns a newly-created MachineFunction Printer pass. The default output
/// stream is std::cerr; the default banner is empty.
///
FunctionPass *llvm::createMachineFunctionPrinterPass(std::ostream *OS,
const std::string &Banner){
return new Printer(OS, Banner);
}
namespace {
struct VISIBILITY_HIDDEN Deleter : public MachineFunctionPass {
const char *getPassName() const { return "Machine Code Deleter"; }
bool runOnMachineFunction(MachineFunction &MF) {
// Delete the annotation from the function now.
MachineFunction::destruct(MF.getFunction());
return true;
}
};
}
/// MachineCodeDeletion Pass - This pass deletes all of the machine code for
/// the current function, which should happen after the function has been
/// emitted to a .s file or to memory.
FunctionPass *llvm::createMachineCodeDeleter() {
return new Deleter();
}
//===---------------------------------------------------------------------===//
// MachineFunction implementation
//===---------------------------------------------------------------------===//
MachineBasicBlock* ilist_traits<MachineBasicBlock>::createSentinel() {
MachineBasicBlock* dummy = new MachineBasicBlock();
LeakDetector::removeGarbageObject(dummy);
return dummy;
}
void ilist_traits<MachineBasicBlock>::transferNodesFromList(
iplist<MachineBasicBlock, ilist_traits<MachineBasicBlock> >& toList,
ilist_iterator<MachineBasicBlock> first,
ilist_iterator<MachineBasicBlock> last) {
if (Parent != toList.Parent)
for (; first != last; ++first)
first->Parent = toList.Parent;
}
MachineFunction::MachineFunction(const Function *F,
const TargetMachine &TM)
: Annotation(MF_AID), Fn(F), Target(TM), UsedPhysRegs(0) {
SSARegMapping = new SSARegMap();
MFInfo = 0;
FrameInfo = new MachineFrameInfo();
ConstantPool = new MachineConstantPool(TM.getTargetData());
// Set up jump table.
const TargetData &TD = *TM.getTargetData();
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
unsigned EntrySize = IsPic ? 4 : TD.getPointerSize();
unsigned Alignment = IsPic ? TD.getABITypeAlignment(Type::Int32Ty)
: TD.getPointerABIAlignment();
JumpTableInfo = new MachineJumpTableInfo(EntrySize, Alignment);
BasicBlocks.Parent = this;
}
MachineFunction::~MachineFunction() {
BasicBlocks.clear();
delete SSARegMapping;
delete MFInfo;
delete FrameInfo;
delete ConstantPool;
delete JumpTableInfo;
delete[] UsedPhysRegs;
}
/// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
/// recomputes them. This guarantees that the MBB numbers are sequential,
/// dense, and match the ordering of the blocks within the function. If a
/// specific MachineBasicBlock is specified, only that block and those after
/// it are renumbered.
void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
if (empty()) { MBBNumbering.clear(); return; }
MachineFunction::iterator MBBI, E = end();
if (MBB == 0)
MBBI = begin();
else
MBBI = MBB;
// Figure out the block number this should have.
unsigned BlockNo = 0;
if (MBBI != begin())
BlockNo = prior(MBBI)->getNumber()+1;
for (; MBBI != E; ++MBBI, ++BlockNo) {
if (MBBI->getNumber() != (int)BlockNo) {
// Remove use of the old number.
if (MBBI->getNumber() != -1) {
assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
"MBB number mismatch!");
MBBNumbering[MBBI->getNumber()] = 0;
}
// If BlockNo is already taken, set that block's number to -1.
if (MBBNumbering[BlockNo])
MBBNumbering[BlockNo]->setNumber(-1);
MBBNumbering[BlockNo] = MBBI;
MBBI->setNumber(BlockNo);
}
}
// Okay, all the blocks are renumbered. If we have compactified the block
// numbering, shrink MBBNumbering now.
assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
MBBNumbering.resize(BlockNo);
}
void MachineFunction::dump() const { print(*cerr.stream()); }
void MachineFunction::print(std::ostream &OS) const {
OS << "# Machine code for " << Fn->getName () << "():\n";
// Print Frame Information
getFrameInfo()->print(*this, OS);
// Print JumpTable Information
getJumpTableInfo()->print(OS);
// Print Constant Pool
getConstantPool()->print(OS);
const MRegisterInfo *MRI = getTarget().getRegisterInfo();
if (livein_begin() != livein_end()) {
OS << "Live Ins:";
for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) {
if (MRI)
OS << " " << MRI->getName(I->first);
else
OS << " Reg #" << I->first;
if (I->second)
OS << " in VR#" << I->second << " ";
}
OS << "\n";
}
if (liveout_begin() != liveout_end()) {
OS << "Live Outs:";
for (liveout_iterator I = liveout_begin(), E = liveout_end(); I != E; ++I)
if (MRI)
OS << " " << MRI->getName(*I);
else
OS << " Reg #" << *I;
OS << "\n";
}
for (const_iterator BB = begin(); BB != end(); ++BB)
BB->print(OS);
OS << "\n# End machine code for " << Fn->getName () << "().\n\n";
}
/// CFGOnly flag - This is used to control whether or not the CFG graph printer
/// prints out the contents of basic blocks or not. This is acceptable because
/// this code is only really used for debugging purposes.
///
static bool CFGOnly = false;
namespace llvm {
template<>
struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
static std::string getGraphName(const MachineFunction *F) {
return "CFG for '" + F->getFunction()->getName() + "' function";
}
static std::string getNodeLabel(const MachineBasicBlock *Node,
const MachineFunction *Graph) {
if (CFGOnly && Node->getBasicBlock() &&
!Node->getBasicBlock()->getName().empty())
return Node->getBasicBlock()->getName() + ":";
std::ostringstream Out;
if (CFGOnly) {
Out << Node->getNumber() << ':';
return Out.str();
}
Node->print(Out);
std::string OutStr = Out.str();
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
for (unsigned i = 0; i != OutStr.length(); ++i)
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin()+i+1, 'l');
}
return OutStr;
}
};
}
void MachineFunction::viewCFG() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getFunction()->getName());
#else
cerr << "SelectionDAG::viewGraph is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
void MachineFunction::viewCFGOnly() const
{
CFGOnly = true;
viewCFG();
CFGOnly = false;
}
// The next two methods are used to construct and to retrieve
// the MachineCodeForFunction object for the given function.
// construct() -- Allocates and initializes for a given function and target
// get() -- Returns a handle to the object.
// This should not be called before "construct()"
// for a given Function.
//
MachineFunction&
MachineFunction::construct(const Function *Fn, const TargetMachine &Tar)
{
assert(Fn->getAnnotation(MF_AID) == 0 &&
"Object already exists for this function!");
MachineFunction* mcInfo = new MachineFunction(Fn, Tar);
Fn->addAnnotation(mcInfo);
return *mcInfo;
}
void MachineFunction::destruct(const Function *Fn) {
bool Deleted = Fn->deleteAnnotation(MF_AID);
assert(Deleted && "Machine code did not exist for function!");
}
MachineFunction& MachineFunction::get(const Function *F)
{
MachineFunction *mc = (MachineFunction*)F->getAnnotation(MF_AID);
assert(mc && "Call construct() method first to allocate the object");
return *mc;
}
void MachineFunction::clearSSARegMap() {
delete SSARegMapping;
SSARegMapping = 0;
}
//===----------------------------------------------------------------------===//
// MachineFrameInfo implementation
//===----------------------------------------------------------------------===//
void MachineFrameInfo::print(const MachineFunction &MF, std::ostream &OS) const{
int ValOffset = MF.getTarget().getFrameInfo()->getOffsetOfLocalArea();
for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
const StackObject &SO = Objects[i];
OS << " <fi #" << (int)(i-NumFixedObjects) << ">: ";
if (SO.Size == 0)
OS << "variable sized";
else
OS << "size is " << SO.Size << " byte" << (SO.Size != 1 ? "s," : ",");
OS << " alignment is " << SO.Alignment << " byte"
<< (SO.Alignment != 1 ? "s," : ",");
if (i < NumFixedObjects)
OS << " fixed";
if (i < NumFixedObjects || SO.SPOffset != -1) {
int Off = SO.SPOffset - ValOffset;
OS << " at location [SP";
if (Off > 0)
OS << "+" << Off;
else if (Off < 0)
OS << Off;
OS << "]";
}
OS << "\n";
}
if (HasVarSizedObjects)
OS << " Stack frame contains variable sized objects\n";
}
void MachineFrameInfo::dump(const MachineFunction &MF) const {
print(MF, *cerr.stream());
}
//===----------------------------------------------------------------------===//
// MachineJumpTableInfo implementation
//===----------------------------------------------------------------------===//
/// getJumpTableIndex - Create a new jump table entry in the jump table info
/// or return an existing one.
///
unsigned MachineJumpTableInfo::getJumpTableIndex(
const std::vector<MachineBasicBlock*> &DestBBs) {
assert(!DestBBs.empty() && "Cannot create an empty jump table!");
for (unsigned i = 0, e = JumpTables.size(); i != e; ++i)
if (JumpTables[i].MBBs == DestBBs)
return i;
JumpTables.push_back(MachineJumpTableEntry(DestBBs));
return JumpTables.size()-1;
}
void MachineJumpTableInfo::print(std::ostream &OS) const {
// FIXME: this is lame, maybe we could print out the MBB numbers or something
// like {1, 2, 4, 5, 3, 0}
for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
OS << " <jt #" << i << "> has " << JumpTables[i].MBBs.size()
<< " entries\n";
}
}
void MachineJumpTableInfo::dump() const { print(*cerr.stream()); }
//===----------------------------------------------------------------------===//
// MachineConstantPool implementation
//===----------------------------------------------------------------------===//
const Type *MachineConstantPoolEntry::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}
MachineConstantPool::~MachineConstantPool() {
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (Constants[i].isMachineConstantPoolEntry())
delete Constants[i].Val.MachineCPVal;
}
/// getConstantPoolIndex - Create a new entry in the constant pool or return
/// an existing one. User must specify an alignment in bytes for the object.
///
unsigned MachineConstantPool::getConstantPoolIndex(Constant *C,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
unsigned AlignMask = (1 << Alignment)-1;
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (Constants[i].Val.ConstVal == C && (Constants[i].Offset & AlignMask)== 0)
return i;
unsigned Offset = 0;
if (!Constants.empty()) {
Offset = Constants.back().getOffset();
Offset += TD->getTypeSize(Constants.back().getType());
Offset = (Offset+AlignMask)&~AlignMask;
}
Constants.push_back(MachineConstantPoolEntry(C, Offset));
return Constants.size()-1;
}
unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
unsigned AlignMask = (1 << Alignment)-1;
int Idx = V->getExistingMachineCPValue(this, Alignment);
if (Idx != -1)
return (unsigned)Idx;
unsigned Offset = 0;
if (!Constants.empty()) {
Offset = Constants.back().getOffset();
Offset += TD->getTypeSize(Constants.back().getType());
Offset = (Offset+AlignMask)&~AlignMask;
}
Constants.push_back(MachineConstantPoolEntry(V, Offset));
return Constants.size()-1;
}
void MachineConstantPool::print(std::ostream &OS) const {
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
OS << " <cp #" << i << "> is";
if (Constants[i].isMachineConstantPoolEntry())
Constants[i].Val.MachineCPVal->print(OS);
else
OS << *(Value*)Constants[i].Val.ConstVal;
OS << " , offset=" << Constants[i].getOffset();
OS << "\n";
}
}
void MachineConstantPool::dump() const { print(*cerr.stream()); }