llvm-6502/lib/CodeGen/MachineRegisterInfo.cpp

283 lines
9.9 KiB
C++
Raw Normal View History

//===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MachineRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
MachineRegisterInfo::MachineRegisterInfo(const TargetRegisterInfo &TRI)
: TRI(&TRI), IsSSA(true), TracksLiveness(true) {
VRegInfo.reserve(256);
RegAllocHints.reserve(256);
UsedPhysRegs.resize(TRI.getNumRegs());
UsedPhysRegMask.resize(TRI.getNumRegs());
// Create the physreg use/def lists.
PhysRegUseDefLists = new MachineOperand*[TRI.getNumRegs()];
memset(PhysRegUseDefLists, 0, sizeof(MachineOperand*)*TRI.getNumRegs());
}
MachineRegisterInfo::~MachineRegisterInfo() {
#ifndef NDEBUG
clearVirtRegs();
for (unsigned i = 0, e = UsedPhysRegs.size(); i != e; ++i)
assert(!PhysRegUseDefLists[i] &&
"PhysRegUseDefLists has entries after all instructions are deleted");
#endif
delete [] PhysRegUseDefLists;
}
/// setRegClass - Set the register class of the specified virtual register.
///
void
MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) {
VRegInfo[Reg].first = RC;
}
const TargetRegisterClass *
MachineRegisterInfo::constrainRegClass(unsigned Reg,
const TargetRegisterClass *RC,
unsigned MinNumRegs) {
const TargetRegisterClass *OldRC = getRegClass(Reg);
if (OldRC == RC)
return RC;
const TargetRegisterClass *NewRC = TRI->getCommonSubClass(OldRC, RC);
if (!NewRC || NewRC == OldRC)
return NewRC;
if (NewRC->getNumRegs() < MinNumRegs)
return 0;
setRegClass(Reg, NewRC);
return NewRC;
}
bool
MachineRegisterInfo::recomputeRegClass(unsigned Reg, const TargetMachine &TM) {
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterClass *OldRC = getRegClass(Reg);
const TargetRegisterClass *NewRC = TRI->getLargestLegalSuperClass(OldRC);
// Stop early if there is no room to grow.
if (NewRC == OldRC)
return false;
// Accumulate constraints from all uses.
for (reg_nodbg_iterator I = reg_nodbg_begin(Reg), E = reg_nodbg_end(); I != E;
++I) {
const TargetRegisterClass *OpRC =
I->getRegClassConstraint(I.getOperandNo(), TII, TRI);
if (unsigned SubIdx = I.getOperand().getSubReg()) {
if (OpRC)
NewRC = TRI->getMatchingSuperRegClass(NewRC, OpRC, SubIdx);
else
NewRC = TRI->getSubClassWithSubReg(NewRC, SubIdx);
} else if (OpRC)
NewRC = TRI->getCommonSubClass(NewRC, OpRC);
if (!NewRC || NewRC == OldRC)
return false;
}
setRegClass(Reg, NewRC);
return true;
}
/// createVirtualRegister - Create and return a new virtual register in the
/// function with the specified register class.
///
unsigned
MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
assert(RegClass && "Cannot create register without RegClass!");
assert(RegClass->isAllocatable() &&
"Virtual register RegClass must be allocatable.");
// New virtual register number.
unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
// Add a reg, but keep track of whether the vector reallocated or not.
const unsigned FirstVirtReg = TargetRegisterInfo::index2VirtReg(0);
void *ArrayBase = getNumVirtRegs() == 0 ? 0 : &VRegInfo[FirstVirtReg];
VRegInfo.grow(Reg);
VRegInfo[Reg].first = RegClass;
RegAllocHints.grow(Reg);
if (ArrayBase && &VRegInfo[FirstVirtReg] != ArrayBase)
// The vector reallocated, handle this now.
HandleVRegListReallocation();
return Reg;
}
/// clearVirtRegs - Remove all virtual registers (after physreg assignment).
void MachineRegisterInfo::clearVirtRegs() {
#ifndef NDEBUG
for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i)
assert(VRegInfo[TargetRegisterInfo::index2VirtReg(i)].second == 0 &&
"Vreg use list non-empty still?");
#endif
VRegInfo.clear();
}
/// HandleVRegListReallocation - We just added a virtual register to the
/// VRegInfo info list and it reallocated. Update the use/def lists info
/// pointers.
void MachineRegisterInfo::HandleVRegListReallocation() {
// The back pointers for the vreg lists point into the previous vector.
// Update them to point to their correct slots.
for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
MachineOperand *List = VRegInfo[Reg].second;
if (!List) continue;
// Update the back-pointer to be accurate once more.
List->Contents.Reg.Prev = &VRegInfo[Reg].second;
}
}
/// replaceRegWith - Replace all instances of FromReg with ToReg in the
/// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
/// except that it also changes any definitions of the register as well.
void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) {
assert(FromReg != ToReg && "Cannot replace a reg with itself");
// TODO: This could be more efficient by bulk changing the operands.
for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) {
MachineOperand &O = I.getOperand();
++I;
O.setReg(ToReg);
}
}
/// getVRegDef - Return the machine instr that defines the specified virtual
/// register or null if none is found. This assumes that the code is in SSA
/// form, so there should only be one definition.
MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const {
// Since we are in SSA form, we can use the first definition.
def_iterator I = def_begin(Reg);
return !I.atEnd() ? &*I : 0;
}
bool MachineRegisterInfo::hasOneUse(unsigned RegNo) const {
use_iterator UI = use_begin(RegNo);
if (UI == use_end())
return false;
return ++UI == use_end();
}
bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const {
use_nodbg_iterator UI = use_nodbg_begin(RegNo);
if (UI == use_nodbg_end())
return false;
return ++UI == use_nodbg_end();
}
/// clearKillFlags - Iterate over all the uses of the given register and
/// clear the kill flag from the MachineOperand. This function is used by
/// optimization passes which extend register lifetimes and need only
/// preserve conservative kill flag information.
void MachineRegisterInfo::clearKillFlags(unsigned Reg) const {
for (use_iterator UI = use_begin(Reg), UE = use_end(); UI != UE; ++UI)
UI.getOperand().setIsKill(false);
}
bool MachineRegisterInfo::isLiveIn(unsigned Reg) const {
for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
if (I->first == Reg || I->second == Reg)
return true;
return false;
}
bool MachineRegisterInfo::isLiveOut(unsigned Reg) const {
for (liveout_iterator I = liveout_begin(), E = liveout_end(); I != E; ++I)
if (*I == Reg)
return true;
return false;
}
/// getLiveInPhysReg - If VReg is a live-in virtual register, return the
/// corresponding live-in physical register.
unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const {
for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
if (I->second == VReg)
return I->first;
return 0;
}
/// getLiveInVirtReg - If PReg is a live-in physical register, return the
/// corresponding live-in physical register.
unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const {
for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
if (I->first == PReg)
return I->second;
return 0;
}
/// EmitLiveInCopies - Emit copies to initialize livein virtual registers
/// into the given entry block.
void
MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB,
const TargetRegisterInfo &TRI,
const TargetInstrInfo &TII) {
// Emit the copies into the top of the block.
for (unsigned i = 0, e = LiveIns.size(); i != e; ++i)
if (LiveIns[i].second) {
if (use_empty(LiveIns[i].second)) {
// The livein has no uses. Drop it.
//
// It would be preferable to have isel avoid creating live-in
// records for unused arguments in the first place, but it's
// complicated by the debug info code for arguments.
LiveIns.erase(LiveIns.begin() + i);
--i; --e;
} else {
// Emit a copy.
BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(),
TII.get(TargetOpcode::COPY), LiveIns[i].second)
.addReg(LiveIns[i].first);
// Add the register to the entry block live-in set.
EntryMBB->addLiveIn(LiveIns[i].first);
}
} else {
// Add the register to the entry block live-in set.
EntryMBB->addLiveIn(LiveIns[i].first);
}
}
#ifndef NDEBUG
void MachineRegisterInfo::dumpUses(unsigned Reg) const {
for (use_iterator I = use_begin(Reg), E = use_end(); I != E; ++I)
I.getOperand().getParent()->dump();
}
#endif
void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) {
ReservedRegs = TRI->getReservedRegs(MF);
}
bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg,
const MachineFunction &MF) const {
assert(TargetRegisterInfo::isPhysicalRegister(PhysReg));
// Check if any overlapping register is modified.
for (const uint16_t *R = TRI->getOverlaps(PhysReg); *R; ++R)
if (!def_empty(*R))
return false;
// Check if any overlapping register is allocatable so it may be used later.
if (AllocatableRegs.empty())
AllocatableRegs = TRI->getAllocatableSet(MF);
for (const uint16_t *R = TRI->getOverlaps(PhysReg); *R; ++R)
if (AllocatableRegs.test(*R))
return false;
return true;
}