llvm-6502/lib/Target/Mips/CMakeLists.txt

56 lines
1.6 KiB
CMake
Raw Normal View History

set(LLVM_TARGET_DEFINITIONS Mips.td)
tablegen(LLVM MipsGenRegisterInfo.inc -gen-register-info)
tablegen(LLVM MipsGenInstrInfo.inc -gen-instr-info)
tablegen(LLVM MipsGenDisassemblerTables.inc -gen-disassembler)
tablegen(LLVM MipsGenCodeEmitter.inc -gen-emitter)
tablegen(LLVM MipsGenMCCodeEmitter.inc -gen-emitter -mc-emitter)
tablegen(LLVM MipsGenAsmWriter.inc -gen-asm-writer)
tablegen(LLVM MipsGenDAGISel.inc -gen-dag-isel)
tablegen(LLVM MipsGenCallingConv.inc -gen-callingconv)
tablegen(LLVM MipsGenSubtargetInfo.inc -gen-subtarget)
tablegen(LLVM MipsGenAsmMatcher.inc -gen-asm-matcher)
tablegen(LLVM MipsGenMCPseudoLowering.inc -gen-pseudo-lowering)
Clean up a pile of hacks in our CMake build relating to TableGen. The first problem to fix is to stop creating synthetic *Table_gen targets next to all of the LLVM libraries. These had no real effect as CMake specifies that add_custom_command(OUTPUT ...) directives (what the 'tablegen(...)' stuff expands to) are implicitly added as dependencies to all the rules in that CMakeLists.txt. These synthetic rules started to cause problems as we started more and more heavily using tablegen files from *subdirectories* of the one where they were generated. Within those directories, the set of tablegen outputs was still available and so these synthetic rules added them as dependencies of those subdirectories. However, they were no longer properly associated with the custom command to generate them. Most of the time this "just worked" because something would get to the parent directory first, and run tablegen there. Once run, the files existed and the build proceeded happily. However, as more and more subdirectories have started using this, the probability of this failing to happen has increased. Recently with the MC refactorings, it became quite common for me when touching a large enough number of targets. To add insult to injury, several of the backends *tried* to fix this by adding explicit dependencies back to the parent directory's tablegen rules, but those dependencies didn't work as expected -- they weren't forming a linear chain, they were adding another thread in the race. This patch removes these synthetic rules completely, and adds a much simpler function to declare explicitly that a collection of tablegen'ed files are referenced by other libraries. From that, we can add explicit dependencies from the smaller libraries (such as every architectures Desc library) on this and correctly form a linear sequence. All of the backends are updated to use it, sometimes replacing the existing attempt at adding a dependency, sometimes adding a previously missing dependency edge. Please let me know if this causes any problems, but it fixes a rather persistent and problematic source of build flakiness on our end. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136023 91177308-0d34-0410-b5e6-96231b3b80d8
2011-07-26 00:09:08 +00:00
add_public_tablegen_target(MipsCommonTableGen)
add_llvm_target(MipsCodeGen
Mips16FrameLowering.cpp
Mips16InstrInfo.cpp
Mips16ISelDAGToDAG.cpp
Mips16ISelLowering.cpp
Mips16RegisterInfo.cpp
MipsAnalyzeImmediate.cpp
MipsAsmPrinter.cpp
MipsCodeEmitter.cpp
MipsConstantIslandPass.cpp
MipsDelaySlotFiller.cpp
MipsJITInfo.cpp
MipsInstrInfo.cpp
MipsISelDAGToDAG.cpp
MipsISelLowering.cpp
MipsFrameLowering.cpp
MipsLongBranch.cpp
MipsMCInstLower.cpp
MipsMachineFunction.cpp
This patch enables llvm to switch between compiling for mips32/mips64 and mips16 on a per function basis. Because this patch is somewhat involved I have provide an overview of the key pieces of it. The patch is written so as to not change the behavior of the non mixed mode. We have tested this a lot but it is something new to switch subtargets so we don't want any chance of regression in the mainline compiler until we have more confidence in this. Mips32/64 are very different from Mip16 as is the case of ARM vs Thumb1. For that reason there are derived versions of the register info, frame info, instruction info and instruction selection classes. Now we register three separate passes for instruction selection. One which is used to switch subtargets (MipsModuleISelDAGToDAG.cpp) and then one for each of the current subtargets (Mips16ISelDAGToDAG.cpp and MipsSEISelDAGToDAG.cpp). When the ModuleISel pass runs, it determines if there is a need to switch subtargets and if so, the owning pointers in MipsTargetMachine are appropriately changed. When 16Isel or SEIsel is run, they will return immediately without doing any work if the current subtarget mode does not apply to them. In addition, MipsAsmPrinter needs to be reset on a function basis. The pass BasicTargetTransformInfo is substituted with a null pass since the pass is immutable and really needs to be a function pass for it to be used with changing subtargets. This will be fixed in a follow on patch. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179118 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-09 19:46:01 +00:00
MipsModuleISelDAGToDAG.cpp
This is for an experimental option -mips-os16. The idea is to compile all Mips32 code as Mips16 unless it can't be compiled as Mips 16. For now this would happen as long as floating point instructions are not needed. Probably it would also make sense to compile as mips32 if atomic operations are needed too. There may be other cases too. A module pass prescans the IR and adds the mips16 or nomips16 attribute to functions depending on the functions needs. Mips 16 mode can result in a 40% code compression by utililizing 16 bit encoding of many instructions. The hope is for this to replace the traditional gcc way of dealing with Mips16 code using floating point which involves essentially using soft float but with a library implemented using mips32 floating point. This gcc method also requires creating stubs so that Mips32 code can interact with these Mips 16 functions that have floating point needs. My conjecture is that in reality this traditional gcc method would never win over this new method. I will be implementing the traditional gcc method also. Some of it is already done but I needed to do the stubs to finish the work and those required this mips16/32 mixed mode capability. I have more ideas for to make this new method much better and I think the old method will just live in llvm for anyone that needs the backward compatibility but I don't for what reason that would be needed. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179185 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-10 16:58:04 +00:00
MipsOs16.cpp
MipsRegisterInfo.cpp
MipsSEFrameLowering.cpp
MipsSEInstrInfo.cpp
MipsSEISelDAGToDAG.cpp
MipsSEISelLowering.cpp
MipsSERegisterInfo.cpp
MipsSubtarget.cpp
MipsTargetMachine.cpp
MipsTargetObjectFile.cpp
MipsSelectionDAGInfo.cpp
)
add_dependencies(LLVMMipsCodeGen intrinsics_gen)
add_subdirectory(InstPrinter)
add_subdirectory(Disassembler)
add_subdirectory(TargetInfo)
add_subdirectory(MCTargetDesc)
add_subdirectory(AsmParser)