Mips32 code as Mips16 unless it can't be compiled as Mips 16. For now this
would happen as long as floating point instructions are not needed.
Probably it would also make sense to compile as mips32 if atomic operations
are needed too. There may be other cases too.
A module pass prescans the IR and adds the mips16 or nomips16 attribute
to functions depending on the functions needs.
Mips 16 mode can result in a 40% code compression by utililizing 16 bit
encoding of many instructions.
The hope is for this to replace the traditional gcc way of dealing with
Mips16 code using floating point which involves essentially using soft float
but with a library implemented using mips32 floating point. This gcc
method also requires creating stubs so that Mips32 code can interact with
these Mips 16 functions that have floating point needs. My conjecture is
that in reality this traditional gcc method would never win over this
new method.
I will be implementing the traditional gcc method also. Some of it is already
done but I needed to do the stubs to finish the work and those required
this mips16/32 mixed mode capability.
I have more ideas for to make this new method much better and I think the old
method will just live in llvm for anyone that needs the backward compatibility
but I don't for what reason that would be needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179185 91177308-0d34-0410-b5e6-96231b3b80d8
and mips16 on a per function basis.
Because this patch is somewhat involved I have provide an overview of the
key pieces of it.
The patch is written so as to not change the behavior of the non mixed
mode. We have tested this a lot but it is something new to switch subtargets
so we don't want any chance of regression in the mainline compiler until
we have more confidence in this.
Mips32/64 are very different from Mip16 as is the case of ARM vs Thumb1.
For that reason there are derived versions of the register info, frame info,
instruction info and instruction selection classes.
Now we register three separate passes for instruction selection.
One which is used to switch subtargets (MipsModuleISelDAGToDAG.cpp) and then
one for each of the current subtargets (Mips16ISelDAGToDAG.cpp and
MipsSEISelDAGToDAG.cpp).
When the ModuleISel pass runs, it determines if there is a need to switch
subtargets and if so, the owning pointers in MipsTargetMachine are
appropriately changed.
When 16Isel or SEIsel is run, they will return immediately without doing
any work if the current subtarget mode does not apply to them.
In addition, MipsAsmPrinter needs to be reset on a function basis.
The pass BasicTargetTransformInfo is substituted with a null pass since the
pass is immutable and really needs to be a function pass for it to be
used with changing subtargets. This will be fixed in a follow on patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179118 91177308-0d34-0410-b5e6-96231b3b80d8
If the code is generated as assembler, this transformation does not occur assuming that it will occur later in the assembler.
This code was originally called from MipsAsmPrinter.cpp and we needed to check for OutStreamer.hasRawTextSupport(). This was not a good place for it and has been moved to MCTargetDesc/MipsMCCodeEmitter.cpp where both direct object and the assembler use it it automagically.
The test cases have been checked in for a number of weeks now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165067 91177308-0d34-0410-b5e6-96231b3b80d8
assembler such as shifts greater than 32. In the case
of direct object, the code gen needs to do this lowering
since the assembler is not involved.
With the advent of the llvm-mc assembler, it also needs
to do the same lowering.
This patch makes that specific lowering code accessible
to both the direct object output and the assembler.
This patch does not affect generated output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163287 91177308-0d34-0410-b5e6-96231b3b80d8
No new tests are added.
All tests in ExecutionEngine/MCJIT that have been failing pass after this patch
is applied (when "make check" is done on a mips board).
Patch by Petar Jovanovic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162135 91177308-0d34-0410-b5e6-96231b3b80d8
MipsSEFrameLowering.
Implement MipsSEFrameLowering::hasReservedCallFrame. Call frames will not be
reserved if there is a call with a large call frame or there are variable sized
objects on the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161090 91177308-0d34-0410-b5e6-96231b3b80d8
-Fix binary codes and rename operands in .td files so that automatically
generated function MipsCodeEmitter::getBinaryCodeForInstr gives correct
encoding for instructions.
-Define new class FMem for instructions that access memory.
-Define new class FFRGPR for instructions that move data between GPR and
FPU general and control registers.
-Define custom encoder methods for memory operands, and also for size
operands of ext and ins instructions.
-Only static relocation model is currently implemented.
Patch by Sasa Stankovic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142378 91177308-0d34-0410-b5e6-96231b3b80d8
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136023 91177308-0d34-0410-b5e6-96231b3b80d8
Stefanovic. I removed the part that actually emits the instructions cause
I want that to get in better shape first and in incremental steps. This
also makes it easier to review the upcoming parts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135678 91177308-0d34-0410-b5e6-96231b3b80d8
target machine from those that are only needed by codegen. The goal is to
sink the essential target description into MC layer so we can start building
MC based tools without needing to link in the entire codegen.
First step is to refactor TargetRegisterInfo. This patch added a base class
MCRegisterInfo which TargetRegisterInfo is derived from. Changed TableGen to
separate register description from the rest of the stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133782 91177308-0d34-0410-b5e6-96231b3b80d8
of testing for its presence at cmake time.
This way the build automatically regenerates the makefiles when a svn
update brings in a new sublibrary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126068 91177308-0d34-0410-b5e6-96231b3b80d8