llvm-6502/lib/Target/SparcV9/RegAlloc/LiveRangeInfo.cpp

370 lines
13 KiB
C++
Raw Normal View History

//===-- LiveRangeInfo.cpp -------------------------------------------------===//
//
// Live range construction for coloring-based register allocation for LLVM.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveRangeInfo.h"
#include "llvm/CodeGen/RegAllocCommon.h"
#include "llvm/CodeGen/RegClass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineCodeForBasicBlock.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "Support/SetOperations.h"
using std::cerr;
LiveRangeInfo::LiveRangeInfo(const Function *F, const TargetMachine &tm,
std::vector<RegClass *> &RCL)
: Meth(F), TM(tm), RegClassList(RCL), MRI(tm.getRegInfo()) { }
LiveRangeInfo::~LiveRangeInfo() {
for (LiveRangeMapType::iterator MI = LiveRangeMap.begin();
MI != LiveRangeMap.end(); ++MI) {
if (MI->first && MI->second) {
LiveRange *LR = MI->second;
// we need to be careful in deleting LiveRanges in LiveRangeMap
// since two/more Values in the live range map can point to the same
// live range. We have to make the other entries NULL when we delete
// a live range.
for(LiveRange::iterator LI = LR->begin(); LI != LR->end(); ++LI)
LiveRangeMap[*LI] = 0;
delete LR;
}
}
}
//---------------------------------------------------------------------------
// union two live ranges into one. The 2nd LR is deleted. Used for coalescing.
// Note: the caller must make sure that L1 and L2 are distinct and both
// LRs don't have suggested colors
//---------------------------------------------------------------------------
void LiveRangeInfo::unionAndUpdateLRs(LiveRange *L1, LiveRange *L2) {
assert(L1 != L2 && (!L1->hasSuggestedColor() || !L2->hasSuggestedColor()));
set_union(*L1, *L2); // add elements of L2 to L1
for(ValueSet::iterator L2It = L2->begin(); L2It != L2->end(); ++L2It) {
//assert(( L1->getTypeID() == L2->getTypeID()) && "Merge:Different types");
L1->insert(*L2It); // add the var in L2 to L1
LiveRangeMap[*L2It] = L1; // now the elements in L2 should map
//to L1
}
// Now if LROfDef(L1) has a suggested color, it will remain.
// But, if LROfUse(L2) has a suggested color, the new range
// must have the same color.
if(L2->hasSuggestedColor())
L1->setSuggestedColor(L2->getSuggestedColor());
if (L2->isCallInterference())
L1->setCallInterference();
// add the spill costs
L1->addSpillCost(L2->getSpillCost());
delete L2; // delete L2 as it is no longer needed
}
//---------------------------------------------------------------------------
// Method for constructing all live ranges in a function. It creates live
// ranges for all values defined in the instruction stream. Also, it
// creates live ranges for all incoming arguments of the function.
//---------------------------------------------------------------------------
void LiveRangeInfo::constructLiveRanges() {
if (DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << "Constructing Live Ranges ...\n";
// first find the live ranges for all incoming args of the function since
// those LRs start from the start of the function
for (Function::const_aiterator AI = Meth->abegin(); AI != Meth->aend(); ++AI){
LiveRange *ArgRange = new LiveRange(); // creates a new LR and
ArgRange->insert(AI); // add the arg (def) to it
LiveRangeMap[AI] = ArgRange;
// create a temp machine op to find the register class of value
//const MachineOperand Op(MachineOperand::MO_VirtualRegister);
unsigned rcid = MRI.getRegClassIDOfValue(AI);
ArgRange->setRegClass(RegClassList[rcid]);
if( DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << " Adding LiveRange for argument " << RAV(AI) << "\n";
}
// Now suggest hardware registers for these function args
MRI.suggestRegs4MethodArgs(Meth, *this);
// Now find speical LLVM instructions (CALL, RET) and LRs in machine
// instructions.
//
for (Function::const_iterator BBI=Meth->begin(); BBI != Meth->end(); ++BBI){
// Now find all LRs for machine the instructions. A new LR will be created
// only for defs in the machine instr since, we assume that all Values are
// defined before they are used. However, there can be multiple defs for
// the same Value in machine instructions.
// get the iterator for machine instructions
MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(BBI);
// iterate over all the machine instructions in BB
for(MachineCodeForBasicBlock::iterator MInstIterator = MIVec.begin();
MInstIterator != MIVec.end(); ++MInstIterator) {
MachineInstr *MInst = *MInstIterator;
// Now if the machine instruction is a call/return instruction,
// add it to CallRetInstrList for processing its implicit operands
if(TM.getInstrInfo().isReturn(MInst->getOpCode()) ||
TM.getInstrInfo().isCall(MInst->getOpCode()))
CallRetInstrList.push_back( MInst );
// iterate over MI operands to find defs
for (MachineInstr::val_op_iterator OpI = MInst->begin(),
OpE = MInst->end(); OpI != OpE; ++OpI) {
if(DEBUG_RA >= RA_DEBUG_LiveRanges) {
MachineOperand::MachineOperandType OpTyp =
OpI.getMachineOperand().getOperandType();
if (OpTyp == MachineOperand::MO_CCRegister)
cerr << "\n**CC reg found. Is Def=" << OpI.isDef() << " Val:"
<< RAV(OpI.getMachineOperand().getVRegValue()) << "\n";
}
// create a new LR iff this operand is a def
if (OpI.isDef()) {
const Value *Def = *OpI;
// Only instruction values are accepted for live ranges here
if (Def->getValueType() != Value::InstructionVal ) {
cerr << "\n**%%Error: Def is not an instruction val. Def="
<< RAV(Def) << "\n";
continue;
}
LiveRange *DefRange = LiveRangeMap[Def];
// see LR already there (because of multiple defs)
if( !DefRange) { // if it is not in LiveRangeMap
DefRange = new LiveRange(); // creates a new live range and
DefRange->insert(Def); // add the instruction (def) to it
LiveRangeMap[ Def ] = DefRange; // update the map
if (DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << " creating a LR for def: " << RAV(Def) << "\n";
// set the register class of the new live range
//assert( RegClassList.size() );
MachineOperand::MachineOperandType OpTy =
OpI.getMachineOperand().getOperandType();
bool isCC = ( OpTy == MachineOperand::MO_CCRegister);
unsigned rcid = MRI.getRegClassIDOfValue(
OpI.getMachineOperand().getVRegValue(), isCC );
if (isCC && DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << "\a**created a LR for a CC reg:"
<< RAV(OpI.getMachineOperand().getVRegValue());
DefRange->setRegClass(RegClassList[rcid]);
} else {
DefRange->insert(Def); // add the opearand to def range
// update the map - Operand points
// to the merged set
LiveRangeMap[Def] = DefRange;
if (DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << " Added to existing LR for def: " << RAV(Def) << "\n";
}
} // if isDef()
} // for all opereands in machine instructions
} // for all machine instructions in the BB
} // for all BBs in function
// Now we have to suggest clors for call and return arg live ranges.
// Also, if there are implicit defs (e.g., retun value of a call inst)
// they must be added to the live range list
suggestRegs4CallRets();
if( DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << "Initial Live Ranges constructed!\n";
}
//---------------------------------------------------------------------------
// If some live ranges must be colored with specific hardware registers
// (e.g., for outgoing call args), suggesting of colors for such live
// ranges is done using target specific function. Those functions are called
// from this function. The target specific methods must:
// 1) suggest colors for call and return args.
// 2) create new LRs for implicit defs in machine instructions
//---------------------------------------------------------------------------
void LiveRangeInfo::suggestRegs4CallRets()
{
CallRetInstrListType::iterator It = CallRetInstrList.begin();
for( ; It != CallRetInstrList.end(); ++It ) {
MachineInstr *MInst = *It;
MachineOpCode OpCode = MInst->getOpCode();
if( (TM.getInstrInfo()).isReturn(OpCode) )
MRI.suggestReg4RetValue( MInst, *this);
else if( (TM.getInstrInfo()).isCall( OpCode ) )
MRI.suggestRegs4CallArgs( MInst, *this, RegClassList );
else
assert( 0 && "Non call/ret instr in CallRetInstrList" );
}
}
//--------------------------------------------------------------------------
// The following method coalesces live ranges when possible. This method
// must be called after the interference graph has been constructed.
/* Algorithm:
for each BB in function
for each machine instruction (inst)
for each definition (def) in inst
for each operand (op) of inst that is a use
if the def and op are of the same register type
if the def and op do not interfere //i.e., not simultaneously live
if (degree(LR of def) + degree(LR of op)) <= # avail regs
if both LRs do not have suggested colors
merge2IGNodes(def, op) // i.e., merge 2 LRs
*/
//---------------------------------------------------------------------------
void LiveRangeInfo::coalesceLRs()
{
if(DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << "\nCoalescing LRs ...\n";
for(Function::const_iterator BBI = Meth->begin(), BBE = Meth->end();
BBI != BBE; ++BBI) {
// get the iterator for machine instructions
const MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(BBI);
MachineCodeForBasicBlock::const_iterator MInstIterator = MIVec.begin();
// iterate over all the machine instructions in BB
for( ; MInstIterator != MIVec.end(); ++MInstIterator) {
const MachineInstr * MInst = *MInstIterator;
if( DEBUG_RA >= RA_DEBUG_LiveRanges) {
cerr << " *Iterating over machine instr ";
MInst->dump();
cerr << "\n";
}
// iterate over MI operands to find defs
for(MachineInstr::const_val_op_iterator DefI = MInst->begin(),
DefE = MInst->end(); DefI != DefE; ++DefI) {
if (DefI.isDef()) { // iff this operand is a def
LiveRange *LROfDef = getLiveRangeForValue( *DefI );
RegClass *RCOfDef = LROfDef->getRegClass();
MachineInstr::const_val_op_iterator UseI = MInst->begin(),
UseE = MInst->end();
for( ; UseI != UseE; ++UseI){ // for all uses
LiveRange *LROfUse = getLiveRangeForValue( *UseI );
if (!LROfUse) { // if LR of use is not found
//don't warn about labels
if (!isa<BasicBlock>(*UseI) && DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << " !! Warning: No LR for use " << RAV(*UseI) << "\n";
continue; // ignore and continue
}
if (LROfUse == LROfDef) // nothing to merge if they are same
continue;
if (MRI.getRegType(LROfDef) == MRI.getRegType(LROfUse)) {
// If the two RegTypes are the same
if (!RCOfDef->getInterference(LROfDef, LROfUse) ) {
unsigned CombinedDegree =
LROfDef->getUserIGNode()->getNumOfNeighbors() +
LROfUse->getUserIGNode()->getNumOfNeighbors();
if (CombinedDegree > RCOfDef->getNumOfAvailRegs()) {
// get more precise estimate of combined degree
CombinedDegree = LROfDef->getUserIGNode()->
getCombinedDegree(LROfUse->getUserIGNode());
}
if (CombinedDegree <= RCOfDef->getNumOfAvailRegs()) {
// if both LRs do not have suggested colors
if (!(LROfDef->hasSuggestedColor() &&
LROfUse->hasSuggestedColor())) {
RCOfDef->mergeIGNodesOfLRs(LROfDef, LROfUse);
unionAndUpdateLRs(LROfDef, LROfUse);
}
} // if combined degree is less than # of regs
} // if def and use do not interfere
}// if reg classes are the same
} // for all uses
} // if def
} // for all defs
} // for all machine instructions
} // for all BBs
if (DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << "\nCoalescing Done!\n";
}
/*--------------------------- Debug code for printing ---------------*/
void LiveRangeInfo::printLiveRanges() {
LiveRangeMapType::iterator HMI = LiveRangeMap.begin(); // hash map iterator
cerr << "\nPrinting Live Ranges from Hash Map:\n";
for( ; HMI != LiveRangeMap.end(); ++HMI) {
if (HMI->first && HMI->second) {
cerr << " Value* " << RAV(HMI->first) << "\t: ";
if (IGNode* igNode = HMI->second->getUserIGNode())
cerr << "LR# " << igNode->getIndex();
else
cerr << "LR# " << "<no-IGNode>";
cerr << "\t:Values = "; printSet(*HMI->second); cerr << "\n";
}
}
}