llvm-6502/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp

793 lines
29 KiB
C++
Raw Normal View History

//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dyld"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "JITRegistrar.h"
#include "ObjectImageCommon.h"
#include "RuntimeDyldELF.h"
#include "RuntimeDyldImpl.h"
#include "RuntimeDyldMachO.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MutexGuard.h"
using namespace llvm;
using namespace llvm::object;
// Empty out-of-line virtual destructor as the key function.
RuntimeDyldImpl::~RuntimeDyldImpl() {}
// Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
void JITRegistrar::anchor() {}
void ObjectImage::anchor() {}
void ObjectImageCommon::anchor() {}
namespace llvm {
void RuntimeDyldImpl::registerEHFrames() {
}
void RuntimeDyldImpl::deregisterEHFrames() {
}
MCJIT lazy relocation resolution and symbol address re-assignment. Add handling for tracking the relocations on symbols and resolving them. Keep track of the relocations even after they are resolved so that if the RuntimeDyld client moves the object, it can update the address and any relocations to that object will be updated. For our trival object file load/run test harness (llvm-rtdyld), this enables relocations between functions located in the same object module. It should be trivially extendable to load multiple objects with mutual references. As a simple example, the following now works (running on x86_64 Darwin 10.6): $ cat t.c int bar() { return 65; } int main() { return bar(); } $ clang t.c -fno-asynchronous-unwind-tables -o t.o -c $ otool -vt t.o t.o: (__TEXT,__text) section _bar: 0000000000000000 pushq %rbp 0000000000000001 movq %rsp,%rbp 0000000000000004 movl $0x00000041,%eax 0000000000000009 popq %rbp 000000000000000a ret 000000000000000b nopl 0x00(%rax,%rax) _main: 0000000000000010 pushq %rbp 0000000000000011 movq %rsp,%rbp 0000000000000014 subq $0x10,%rsp 0000000000000018 movl $0x00000000,0xfc(%rbp) 000000000000001f callq 0x00000024 0000000000000024 addq $0x10,%rsp 0000000000000028 popq %rbp 0000000000000029 ret $ llvm-rtdyld t.o -debug-only=dyld ; echo $? Function sym: '_bar' @ 0 Function sym: '_main' @ 16 Extracting function: _bar from [0, 15] allocated to 0x100153000 Extracting function: _main from [16, 41] allocated to 0x100154000 Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000) Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4). loaded '_main' at: 0x100154000 65 $ git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129388 91177308-0d34-0410-b5e6-96231b3b80d8
2011-04-12 21:20:41 +00:00
// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
MutexGuard locked(lock);
// First, resolve relocations associated with external symbols.
resolveExternalSymbols();
// Just iterate over the sections we have and resolve all the relocations
// in them. Gross overkill, but it gets the job done.
for (int i = 0, e = Sections.size(); i != e; ++i) {
// The Section here (Sections[i]) refers to the section in which the
// symbol for the relocation is located. The SectionID in the relocation
// entry provides the section to which the relocation will be applied.
uint64_t Addr = Sections[i].LoadAddress;
DEBUG(dbgs() << "Resolving relocations Section #" << i
<< "\t" << format("%p", (uint8_t *)Addr)
<< "\n");
resolveRelocationList(Relocations[i], Addr);
Relocations.erase(i);
}
MCJIT lazy relocation resolution and symbol address re-assignment. Add handling for tracking the relocations on symbols and resolving them. Keep track of the relocations even after they are resolved so that if the RuntimeDyld client moves the object, it can update the address and any relocations to that object will be updated. For our trival object file load/run test harness (llvm-rtdyld), this enables relocations between functions located in the same object module. It should be trivially extendable to load multiple objects with mutual references. As a simple example, the following now works (running on x86_64 Darwin 10.6): $ cat t.c int bar() { return 65; } int main() { return bar(); } $ clang t.c -fno-asynchronous-unwind-tables -o t.o -c $ otool -vt t.o t.o: (__TEXT,__text) section _bar: 0000000000000000 pushq %rbp 0000000000000001 movq %rsp,%rbp 0000000000000004 movl $0x00000041,%eax 0000000000000009 popq %rbp 000000000000000a ret 000000000000000b nopl 0x00(%rax,%rax) _main: 0000000000000010 pushq %rbp 0000000000000011 movq %rsp,%rbp 0000000000000014 subq $0x10,%rsp 0000000000000018 movl $0x00000000,0xfc(%rbp) 000000000000001f callq 0x00000024 0000000000000024 addq $0x10,%rsp 0000000000000028 popq %rbp 0000000000000029 ret $ llvm-rtdyld t.o -debug-only=dyld ; echo $? Function sym: '_bar' @ 0 Function sym: '_main' @ 16 Extracting function: _bar from [0, 15] allocated to 0x100153000 Extracting function: _main from [16, 41] allocated to 0x100154000 Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000) Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4). loaded '_main' at: 0x100154000 65 $ git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129388 91177308-0d34-0410-b5e6-96231b3b80d8
2011-04-12 21:20:41 +00:00
}
void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) {
MutexGuard locked(lock);
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
if (Sections[i].Address == LocalAddress) {
reassignSectionAddress(i, TargetAddress);
return;
}
}
llvm_unreachable("Attempting to remap address of unknown section!");
}
// Subclasses can implement this method to create specialized image instances.
// The caller owns the pointer that is returned.
ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
return new ObjectImageCommon(InputBuffer);
}
ObjectImage *RuntimeDyldImpl::createObjectImageFromFile(ObjectFile *InputObject) {
return new ObjectImageCommon(InputObject);
}
ObjectImage *RuntimeDyldImpl::loadObject(ObjectFile *InputObject) {
return loadObject(createObjectImageFromFile(InputObject));
}
ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
return loadObject(createObjectImage(InputBuffer));
}
ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
MutexGuard locked(lock);
OwningPtr<ObjectImage> Obj(InputObject);
if (!Obj)
return NULL;
// Save information about our target
Arch = (Triple::ArchType)Obj->getArch();
IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
// Compute the memory size required to load all sections to be loaded
// and pass this information to the memory manager
if (MemMgr->needsToReserveAllocationSpace()) {
uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
}
// Symbols found in this object
StringMap<SymbolLoc> LocalSymbols;
// Used sections from the object file
ObjSectionToIDMap LocalSections;
// Common symbols requiring allocation, with their sizes and alignments
CommonSymbolMap CommonSymbols;
// Maximum required total memory to allocate all common symbols
uint64_t CommonSize = 0;
// Parse symbols
DEBUG(dbgs() << "Parse symbols:\n");
for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
++I) {
object::SymbolRef::Type SymType;
StringRef Name;
Check(I->getType(SymType));
Check(I->getName(Name));
uint32_t Flags = I->getFlags();
bool IsCommon = Flags & SymbolRef::SF_Common;
if (IsCommon) {
// Add the common symbols to a list. We'll allocate them all below.
uint32_t Align;
Check(I->getAlignment(Align));
uint64_t Size = 0;
Check(I->getSize(Size));
CommonSize += Size + Align;
CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
} else {
if (SymType == object::SymbolRef::ST_Function ||
SymType == object::SymbolRef::ST_Data ||
SymType == object::SymbolRef::ST_Unknown) {
uint64_t FileOffset;
StringRef SectionData;
bool IsCode;
section_iterator SI = Obj->end_sections();
Check(I->getFileOffset(FileOffset));
Check(I->getSection(SI));
if (SI == Obj->end_sections()) continue;
Check(SI->getContents(SectionData));
Check(SI->isText(IsCode));
const uint8_t* SymPtr = (const uint8_t*)InputObject->getData().data() +
(uintptr_t)FileOffset;
uintptr_t SectOffset = (uintptr_t)(SymPtr -
(const uint8_t*)SectionData.begin());
unsigned SectionID = findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
<< " flags: " << Flags
<< " SID: " << SectionID
<< " Offset: " << format("%p", SectOffset));
GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
}
}
DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
}
// Allocate common symbols
if (CommonSize != 0)
emitCommonSymbols(*Obj, CommonSymbols, CommonSize, LocalSymbols);
// Parse and process relocations
DEBUG(dbgs() << "Parse relocations:\n");
for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
SI != SE; ++SI) {
bool IsFirstRelocation = true;
unsigned SectionID = 0;
StubMap Stubs;
section_iterator RelocatedSection = SI->getRelocatedSection();
for (relocation_iterator I = SI->relocation_begin(),
E = SI->relocation_end();
I != E; ++I) {
// If it's the first relocation in this section, find its SectionID
if (IsFirstRelocation) {
bool IsCode = false;
Check(RelocatedSection->isText(IsCode));
SectionID =
findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
IsFirstRelocation = false;
}
processRelocationRef(SectionID, *I, *Obj, LocalSections, LocalSymbols,
Stubs);
}
}
// Give the subclasses a chance to tie-up any loose ends.
finalizeLoad(LocalSections);
return Obj.take();
}
// A helper method for computeTotalAllocSize.
// Computes the memory size required to allocate sections with the given sizes,
// assuming that all sections are allocated with the given alignment
static uint64_t computeAllocationSizeForSections(std::vector<uint64_t>& SectionSizes,
uint64_t Alignment) {
uint64_t TotalSize = 0;
for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
uint64_t AlignedSize = (SectionSizes[Idx] + Alignment - 1) /
Alignment * Alignment;
TotalSize += AlignedSize;
}
return TotalSize;
}
// Compute an upper bound of the memory size that is required to load all sections
void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
uint64_t& CodeSize, uint64_t& DataSizeRO, uint64_t& DataSizeRW) {
// Compute the size of all sections required for execution
std::vector<uint64_t> CodeSectionSizes;
std::vector<uint64_t> ROSectionSizes;
std::vector<uint64_t> RWSectionSizes;
uint64_t MaxAlignment = sizeof(void*);
// Collect sizes of all sections to be loaded;
// also determine the max alignment of all sections
for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
bool IsRequired;
Check(Section.isRequiredForExecution(IsRequired));
// Consider only the sections that are required to be loaded for execution
if (IsRequired) {
uint64_t DataSize = 0;
uint64_t Alignment64 = 0;
bool IsCode = false;
bool IsReadOnly = false;
StringRef Name;
Check(Section.getSize(DataSize));
Check(Section.getAlignment(Alignment64));
Check(Section.isText(IsCode));
Check(Section.isReadOnlyData(IsReadOnly));
Check(Section.getName(Name));
unsigned Alignment = (unsigned) Alignment64 & 0xffffffffL;
uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
uint64_t SectionSize = DataSize + StubBufSize;
// The .eh_frame section (at least on Linux) needs an extra four bytes padded
// with zeroes added at the end. For MachO objects, this section has a
// slightly different name, so this won't have any effect for MachO objects.
if (Name == ".eh_frame")
SectionSize += 4;
if (SectionSize > 0) {
// save the total size of the section
if (IsCode) {
CodeSectionSizes.push_back(SectionSize);
} else if (IsReadOnly) {
ROSectionSizes.push_back(SectionSize);
} else {
RWSectionSizes.push_back(SectionSize);
}
// update the max alignment
if (Alignment > MaxAlignment) {
MaxAlignment = Alignment;
}
}
}
}
// Compute the size of all common symbols
uint64_t CommonSize = 0;
for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols();
I != E; ++I) {
uint32_t Flags = I->getFlags();
if (Flags & SymbolRef::SF_Common) {
// Add the common symbols to a list. We'll allocate them all below.
uint64_t Size = 0;
Check(I->getSize(Size));
CommonSize += Size;
}
}
if (CommonSize != 0) {
RWSectionSizes.push_back(CommonSize);
}
// Compute the required allocation space for each different type of sections
// (code, read-only data, read-write data) assuming that all sections are
// allocated with the max alignment. Note that we cannot compute with the
// individual alignments of the sections, because then the required size
// depends on the order, in which the sections are allocated.
CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
}
// compute stub buffer size for the given section
unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
const SectionRef &Section) {
unsigned StubSize = getMaxStubSize();
if (StubSize == 0) {
return 0;
}
// FIXME: this is an inefficient way to handle this. We should computed the
// necessary section allocation size in loadObject by walking all the sections
// once.
unsigned StubBufSize = 0;
for (section_iterator SI = Obj.begin_sections(),
SE = Obj.end_sections();
SI != SE; ++SI) {
section_iterator RelSecI = SI->getRelocatedSection();
if (!(RelSecI == Section))
continue;
for (relocation_iterator I = SI->relocation_begin(),
E = SI->relocation_end();
I != E; ++I) {
StubBufSize += StubSize;
}
}
// Get section data size and alignment
uint64_t Alignment64;
uint64_t DataSize;
Check(Section.getSize(DataSize));
Check(Section.getAlignment(Alignment64));
// Add stubbuf size alignment
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
unsigned StubAlignment = getStubAlignment();
unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
if (StubAlignment > EndAlignment)
StubBufSize += StubAlignment - EndAlignment;
return StubBufSize;
}
void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
const CommonSymbolMap &CommonSymbols,
uint64_t TotalSize,
SymbolTableMap &SymbolTable) {
// Allocate memory for the section
unsigned SectionID = Sections.size();
uint8_t *Addr = MemMgr->allocateDataSection(
TotalSize, sizeof(void*), SectionID, StringRef(), false);
if (!Addr)
report_fatal_error("Unable to allocate memory for common symbols!");
uint64_t Offset = 0;
Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
memset(Addr, 0, TotalSize);
DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << TotalSize
<< "\n");
// Assign the address of each symbol
for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
itEnd = CommonSymbols.end(); it != itEnd; it++) {
uint64_t Size = it->second.first;
uint64_t Align = it->second.second;
StringRef Name;
it->first.getName(Name);
if (Align) {
// This symbol has an alignment requirement.
uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
Addr += AlignOffset;
Offset += AlignOffset;
DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
format("%p\n", Addr));
}
Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
Offset += Size;
Addr += Size;
}
}
unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
const SectionRef &Section,
bool IsCode) {
StringRef data;
uint64_t Alignment64;
Check(Section.getContents(data));
Check(Section.getAlignment(Alignment64));
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
bool IsRequired;
bool IsVirtual;
bool IsZeroInit;
bool IsReadOnly;
uint64_t DataSize;
unsigned PaddingSize = 0;
unsigned StubBufSize = 0;
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166678 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-25 13:13:48 +00:00
StringRef Name;
Check(Section.isRequiredForExecution(IsRequired));
Check(Section.isVirtual(IsVirtual));
Check(Section.isZeroInit(IsZeroInit));
Check(Section.isReadOnlyData(IsReadOnly));
Check(Section.getSize(DataSize));
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166678 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-25 13:13:48 +00:00
Check(Section.getName(Name));
StubBufSize = computeSectionStubBufSize(Obj, Section);
// The .eh_frame section (at least on Linux) needs an extra four bytes padded
// with zeroes added at the end. For MachO objects, this section has a
// slightly different name, so this won't have any effect for MachO objects.
if (Name == ".eh_frame")
PaddingSize = 4;
uintptr_t Allocate;
unsigned SectionID = Sections.size();
uint8_t *Addr;
const char *pData = 0;
// Some sections, such as debug info, don't need to be loaded for execution.
// Leave those where they are.
if (IsRequired) {
Allocate = DataSize + PaddingSize + StubBufSize;
Addr = IsCode
? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name)
: MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name,
IsReadOnly);
if (!Addr)
report_fatal_error("Unable to allocate section memory!");
// Virtual sections have no data in the object image, so leave pData = 0
if (!IsVirtual)
pData = data.data();
// Zero-initialize or copy the data from the image
if (IsZeroInit || IsVirtual)
memset(Addr, 0, DataSize);
else
memcpy(Addr, pData, DataSize);
// Fill in any extra bytes we allocated for padding
if (PaddingSize != 0) {
memset(Addr + DataSize, 0, PaddingSize);
// Update the DataSize variable so that the stub offset is set correctly.
DataSize += PaddingSize;
}
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166678 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-25 13:13:48 +00:00
<< " Name: " << Name
<< " obj addr: " << format("%p", pData)
<< " new addr: " << format("%p", Addr)
<< " DataSize: " << DataSize
<< " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate
<< "\n");
Obj.updateSectionAddress(Section, (uint64_t)Addr);
}
else {
// Even if we didn't load the section, we need to record an entry for it
// to handle later processing (and by 'handle' I mean don't do anything
// with these sections).
Allocate = 0;
Addr = 0;
DEBUG(dbgs() << "emitSection SectionID: " << SectionID
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166678 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-25 13:13:48 +00:00
<< " Name: " << Name
<< " obj addr: " << format("%p", data.data())
<< " new addr: 0"
<< " DataSize: " << DataSize
<< " StubBufSize: " << StubBufSize
<< " Allocate: " << Allocate
<< "\n");
}
Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
return SectionID;
}
unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
const SectionRef &Section,
bool IsCode,
ObjSectionToIDMap &LocalSections) {
unsigned SectionID = 0;
ObjSectionToIDMap::iterator i = LocalSections.find(Section);
if (i != LocalSections.end())
SectionID = i->second;
else {
SectionID = emitSection(Obj, Section, IsCode);
LocalSections[Section] = SectionID;
}
return SectionID;
}
void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
unsigned SectionID) {
Relocations[SectionID].push_back(RE);
}
void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
StringRef SymbolName) {
// Relocation by symbol. If the symbol is found in the global symbol table,
// create an appropriate section relocation. Otherwise, add it to
// ExternalSymbolRelocations.
SymbolTableMap::const_iterator Loc =
GlobalSymbolTable.find(SymbolName);
if (Loc == GlobalSymbolTable.end()) {
ExternalSymbolRelocations[SymbolName].push_back(RE);
} else {
// Copy the RE since we want to modify its addend.
RelocationEntry RECopy = RE;
RECopy.Addend += Loc->second.second;
Relocations[Loc->second.first].push_back(RECopy);
}
}
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
if (Arch == Triple::aarch64) {
// This stub has to be able to access the full address space,
// since symbol lookup won't necessarily find a handy, in-range,
// PLT stub for functions which could be anywhere.
uint32_t *StubAddr = (uint32_t*)Addr;
// Stub can use ip0 (== x16) to calculate address
*StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
StubAddr++;
*StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
StubAddr++;
*StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
StubAddr++;
*StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
StubAddr++;
*StubAddr = 0xd61f0200; // br ip0
return Addr;
} else if (Arch == Triple::arm) {
// TODO: There is only ARM far stub now. We should add the Thumb stub,
// and stubs for branches Thumb - ARM and ARM - Thumb.
uint32_t *StubAddr = (uint32_t*)Addr;
*StubAddr = 0xe51ff004; // ldr pc,<label>
return (uint8_t*)++StubAddr;
} else if (Arch == Triple::mipsel || Arch == Triple::mips) {
uint32_t *StubAddr = (uint32_t*)Addr;
// 0: 3c190000 lui t9,%hi(addr).
// 4: 27390000 addiu t9,t9,%lo(addr).
// 8: 03200008 jr t9.
// c: 00000000 nop.
const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
*StubAddr = LuiT9Instr;
StubAddr++;
*StubAddr = AdduiT9Instr;
StubAddr++;
*StubAddr = JrT9Instr;
StubAddr++;
*StubAddr = NopInstr;
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166678 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-25 13:13:48 +00:00
return Addr;
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
PowerPC: Initial support for PowerPC64 MCJIT This patch adds initial support for MCJIT for PPC64-elf-abi. The TOC relocation and ODP handling is implemented. It fixes the following ExecutionEngine testcases: ExecutionEngine/2003-01-04-ArgumentBug.ll ExecutionEngine/2003-01-04-LoopTest.ll ExecutionEngine/2003-01-04-PhiTest.ll ExecutionEngine/2003-01-09-SARTest.ll ExecutionEngine/2003-01-10-FUCOM.ll ExecutionEngine/2003-01-15-AlignmentTest.ll ExecutionEngine/2003-05-11-PHIRegAllocBug.ll ExecutionEngine/2003-06-04-bzip2-bug.ll ExecutionEngine/2003-06-05-PHIBug.ll ExecutionEngine/2003-08-15-AllocaAssertion.ll ExecutionEngine/2003-08-21-EnvironmentTest.ll ExecutionEngine/2003-08-23-RegisterAllocatePhysReg.ll ExecutionEngine/2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll ExecutionEngine/simplesttest.ll ExecutionEngine/simpletest.ll ExecutionEngine/stubs.ll ExecutionEngine/test-arith.ll ExecutionEngine/test-branch.ll ExecutionEngine/test-call-no-external-funcs.ll ExecutionEngine/test-cast.ll ExecutionEngine/test-common-symbols.ll ExecutionEngine/test-constantexpr.ll ExecutionEngine/test-fp-no-external-funcs.ll ExecutionEngine/test-fp.ll ExecutionEngine/test-global-init-nonzero.ll ExecutionEngine/test-global.ll ExecutionEngine/test-loadstore.ll ExecutionEngine/test-local.ll ExecutionEngine/test-logical.ll ExecutionEngine/test-loop.ll ExecutionEngine/test-phi.ll ExecutionEngine/test-ret.ll ExecutionEngine/test-return.ll ExecutionEngine/test-setcond-fp.ll ExecutionEngine/test-setcond-int.ll ExecutionEngine/test-shift.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166678 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-25 13:13:48 +00:00
// PowerPC64 stub: the address points to a function descriptor
// instead of the function itself. Load the function address
// on r11 and sets it to control register. Also loads the function
// TOC in r2 and environment pointer to r11.
writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
writeInt32BE(Addr+40, 0x4E800420); // bctr
return Addr;
} else if (Arch == Triple::systemz) {
writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
writeInt16BE(Addr+2, 0x0000);
writeInt16BE(Addr+4, 0x0004);
writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
// 8-byte address stored at Addr + 8
return Addr;
} else if (Arch == Triple::x86_64) {
*Addr = 0xFF; // jmp
*(Addr+1) = 0x25; // rip
// 32-bit PC-relative address of the GOT entry will be stored at Addr+2
}
return Addr;
}
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
uint64_t Addr) {
// The address to use for relocation resolution is not
// the address of the local section buffer. We must be doing
// a remote execution environment of some sort. Relocations can't
// be applied until all the sections have been moved. The client must
// trigger this with a call to MCJIT::finalize() or
// RuntimeDyld::resolveRelocations().
//
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
Sections[SectionID].LoadAddress = Addr;
}
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
uint64_t Value) {
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
const RelocationEntry &RE = Relocs[i];
// Ignore relocations for sections that were not loaded
if (Sections[RE.SectionID].Address == 0)
continue;
resolveRelocation(RE, Value);
}
}
void RuntimeDyldImpl::resolveExternalSymbols() {
while(!ExternalSymbolRelocations.empty()) {
StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
StringRef Name = i->first();
if (Name.size() == 0) {
// This is an absolute symbol, use an address of zero.
DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
RelocationList &Relocs = i->second;
resolveRelocationList(Relocs, 0);
} else {
uint64_t Addr = 0;
SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
if (Loc == GlobalSymbolTable.end()) {
// This is an external symbol, try to get its address from
// MemoryManager.
Addr = MemMgr->getSymbolAddress(Name.data());
// The call to getSymbolAddress may have caused additional modules to
// be loaded, which may have added new entries to the
// ExternalSymbolRelocations map. Consquently, we need to update our
// iterator. This is also why retrieval of the relocation list
// associated with this symbol is deferred until below this point.
// New entries may have been added to the relocation list.
i = ExternalSymbolRelocations.find(Name);
} else {
// We found the symbol in our global table. It was probably in a
// Module that we loaded previously.
SymbolLoc SymLoc = Loc->second;
Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
}
// FIXME: Implement error handling that doesn't kill the host program!
if (!Addr)
report_fatal_error("Program used external function '" + Name +
"' which could not be resolved!");
updateGOTEntries(Name, Addr);
DEBUG(dbgs() << "Resolving relocations Name: " << Name
<< "\t" << format("0x%lx", Addr)
<< "\n");
// This list may have been updated when we called getSymbolAddress, so
// don't change this code to get the list earlier.
RelocationList &Relocs = i->second;
resolveRelocationList(Relocs, Addr);
}
ExternalSymbolRelocations.erase(i);
}
}
//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
// FIXME: There's a potential issue lurking here if a single instance of
// RuntimeDyld is used to load multiple objects. The current implementation
// associates a single memory manager with a RuntimeDyld instance. Even
// though the public class spawns a new 'impl' instance for each load,
// they share a single memory manager. This can become a problem when page
// permissions are applied.
Dyld = 0;
MM = mm;
}
RuntimeDyld::~RuntimeDyld() {
delete Dyld;
}
ObjectImage *RuntimeDyld::loadObject(ObjectFile *InputObject) {
if (!Dyld) {
if (InputObject->isELF())
Dyld = new RuntimeDyldELF(MM);
else if (InputObject->isMachO())
Dyld = new RuntimeDyldMachO(MM);
else
report_fatal_error("Incompatible object format!");
} else {
if (!Dyld->isCompatibleFile(InputObject))
report_fatal_error("Incompatible object format!");
}
return Dyld->loadObject(InputObject);
}
ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
if (!Dyld) {
sys::fs::file_magic Type =
sys::fs::identify_magic(InputBuffer->getBuffer());
switch (Type) {
case sys::fs::file_magic::elf_relocatable:
case sys::fs::file_magic::elf_executable:
case sys::fs::file_magic::elf_shared_object:
case sys::fs::file_magic::elf_core:
Dyld = new RuntimeDyldELF(MM);
break;
case sys::fs::file_magic::macho_object:
case sys::fs::file_magic::macho_executable:
case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
case sys::fs::file_magic::macho_core:
case sys::fs::file_magic::macho_preload_executable:
case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
case sys::fs::file_magic::macho_dynamic_linker:
case sys::fs::file_magic::macho_bundle:
case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
case sys::fs::file_magic::macho_dsym_companion:
Dyld = new RuntimeDyldMachO(MM);
break;
case sys::fs::file_magic::unknown:
case sys::fs::file_magic::bitcode:
case sys::fs::file_magic::archive:
case sys::fs::file_magic::coff_object:
case sys::fs::file_magic::coff_import_library:
case sys::fs::file_magic::pecoff_executable:
case sys::fs::file_magic::macho_universal_binary:
case sys::fs::file_magic::windows_resource:
report_fatal_error("Incompatible object format!");
}
} else {
if (!Dyld->isCompatibleFormat(InputBuffer))
report_fatal_error("Incompatible object format!");
}
return Dyld->loadObject(InputBuffer);
}
void *RuntimeDyld::getSymbolAddress(StringRef Name) {
if (!Dyld)
return NULL;
return Dyld->getSymbolAddress(Name);
}
uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
if (!Dyld)
return 0;
return Dyld->getSymbolLoadAddress(Name);
}
MCJIT lazy relocation resolution and symbol address re-assignment. Add handling for tracking the relocations on symbols and resolving them. Keep track of the relocations even after they are resolved so that if the RuntimeDyld client moves the object, it can update the address and any relocations to that object will be updated. For our trival object file load/run test harness (llvm-rtdyld), this enables relocations between functions located in the same object module. It should be trivially extendable to load multiple objects with mutual references. As a simple example, the following now works (running on x86_64 Darwin 10.6): $ cat t.c int bar() { return 65; } int main() { return bar(); } $ clang t.c -fno-asynchronous-unwind-tables -o t.o -c $ otool -vt t.o t.o: (__TEXT,__text) section _bar: 0000000000000000 pushq %rbp 0000000000000001 movq %rsp,%rbp 0000000000000004 movl $0x00000041,%eax 0000000000000009 popq %rbp 000000000000000a ret 000000000000000b nopl 0x00(%rax,%rax) _main: 0000000000000010 pushq %rbp 0000000000000011 movq %rsp,%rbp 0000000000000014 subq $0x10,%rsp 0000000000000018 movl $0x00000000,0xfc(%rbp) 000000000000001f callq 0x00000024 0000000000000024 addq $0x10,%rsp 0000000000000028 popq %rbp 0000000000000029 ret $ llvm-rtdyld t.o -debug-only=dyld ; echo $? Function sym: '_bar' @ 0 Function sym: '_main' @ 16 Extracting function: _bar from [0, 15] allocated to 0x100153000 Extracting function: _main from [16, 41] allocated to 0x100154000 Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000) Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4). loaded '_main' at: 0x100154000 65 $ git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129388 91177308-0d34-0410-b5e6-96231b3b80d8
2011-04-12 21:20:41 +00:00
void RuntimeDyld::resolveRelocations() {
Dyld->resolveRelocations();
}
void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
uint64_t Addr) {
Dyld->reassignSectionAddress(SectionID, Addr);
MCJIT lazy relocation resolution and symbol address re-assignment. Add handling for tracking the relocations on symbols and resolving them. Keep track of the relocations even after they are resolved so that if the RuntimeDyld client moves the object, it can update the address and any relocations to that object will be updated. For our trival object file load/run test harness (llvm-rtdyld), this enables relocations between functions located in the same object module. It should be trivially extendable to load multiple objects with mutual references. As a simple example, the following now works (running on x86_64 Darwin 10.6): $ cat t.c int bar() { return 65; } int main() { return bar(); } $ clang t.c -fno-asynchronous-unwind-tables -o t.o -c $ otool -vt t.o t.o: (__TEXT,__text) section _bar: 0000000000000000 pushq %rbp 0000000000000001 movq %rsp,%rbp 0000000000000004 movl $0x00000041,%eax 0000000000000009 popq %rbp 000000000000000a ret 000000000000000b nopl 0x00(%rax,%rax) _main: 0000000000000010 pushq %rbp 0000000000000011 movq %rsp,%rbp 0000000000000014 subq $0x10,%rsp 0000000000000018 movl $0x00000000,0xfc(%rbp) 000000000000001f callq 0x00000024 0000000000000024 addq $0x10,%rsp 0000000000000028 popq %rbp 0000000000000029 ret $ llvm-rtdyld t.o -debug-only=dyld ; echo $? Function sym: '_bar' @ 0 Function sym: '_main' @ 16 Extracting function: _bar from [0, 15] allocated to 0x100153000 Extracting function: _main from [16, 41] allocated to 0x100154000 Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000) Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4). loaded '_main' at: 0x100154000 65 $ git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129388 91177308-0d34-0410-b5e6-96231b3b80d8
2011-04-12 21:20:41 +00:00
}
void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) {
Dyld->mapSectionAddress(LocalAddress, TargetAddress);
}
StringRef RuntimeDyld::getErrorString() {
return Dyld->getErrorString();
}
void RuntimeDyld::registerEHFrames() {
if (Dyld)
Dyld->registerEHFrames();
}
void RuntimeDyld::deregisterEHFrames() {
if (Dyld)
Dyld->deregisterEHFrames();
}
} // end namespace llvm