llvm-6502/lib/Target/SparcV9/SparcV9AsmPrinter.cpp

932 lines
29 KiB
C++
Raw Normal View History

//===-- EmitAssembly.cpp - Emit Sparc Specific .s File ---------------------==//
//
// This file implements all of the stuff neccesary to output a .s file from
// LLVM. The code in this file assumes that the specified module has already
// been compiled into the internal data structures of the Module.
//
// This code largely consists of two LLVM Pass's: a FunctionPass and a Pass.
// The FunctionPass is pipelined together with all of the rest of the code
// generation stages, and the Pass runs at the end to emit code for global
// variables and such.
//
//===----------------------------------------------------------------------===//
#include "SparcInternals.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/SlotCalculator.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/Writer.h"
#include "Support/StringExtras.h"
using std::string;
namespace {
class GlobalIdTable: public Annotation {
static AnnotationID AnnotId;
friend class AsmPrinter; // give access to AnnotId
typedef hash_map<const Value*, int> ValIdMap;
typedef ValIdMap::const_iterator ValIdMapConstIterator;
typedef ValIdMap:: iterator ValIdMapIterator;
public:
SlotCalculator Table; // map anonymous values to unique integer IDs
ValIdMap valToIdMap; // used for values not handled by SlotCalculator
GlobalIdTable(Module* M) : Annotation(AnnotId), Table(M, true) {}
};
AnnotationID GlobalIdTable::AnnotId =
AnnotationManager::getID("ASM PRINTER GLOBAL TABLE ANNOT");
//===---------------------------------------------------------------------===//
// Code Shared By the two printer passes, as a mixin
//===---------------------------------------------------------------------===//
class AsmPrinter {
GlobalIdTable* idTable;
public:
std::ostream &toAsm;
const TargetMachine &Target;
enum Sections {
Unknown,
Text,
ReadOnlyData,
InitRWData,
ZeroInitRWData,
} CurSection;
AsmPrinter(std::ostream &os, const TargetMachine &T)
: idTable(0), toAsm(os), Target(T), CurSection(Unknown) {}
// (start|end)(Module|Function) - Callback methods to be invoked by subclasses
void startModule(Module &M) {
// Create the global id table if it does not already exist
idTable = (GlobalIdTable*)M.getAnnotation(GlobalIdTable::AnnotId);
if (idTable == NULL) {
idTable = new GlobalIdTable(&M);
M.addAnnotation(idTable);
}
}
void startFunction(Function &F) {
// Make sure the slot table has information about this function...
idTable->Table.incorporateFunction(&F);
}
void endFunction(Function &) {
idTable->Table.purgeFunction(); // Forget all about F
}
void endModule() {
}
// Check if a value is external or accessible from external code.
bool isExternal(const Value* V) {
const GlobalValue *GV = dyn_cast<GlobalValue>(V);
return GV && GV->hasExternalLinkage();
}
// enterSection - Use this method to enter a different section of the output
// executable. This is used to only output neccesary section transitions.
//
void enterSection(enum Sections S) {
if (S == CurSection) return; // Only switch section if neccesary
CurSection = S;
toAsm << "\n\t.section ";
switch (S)
{
default: assert(0 && "Bad section name!");
case Text: toAsm << "\".text\""; break;
case ReadOnlyData: toAsm << "\".rodata\",#alloc"; break;
case InitRWData: toAsm << "\".data\",#alloc,#write"; break;
case ZeroInitRWData: toAsm << "\".bss\",#alloc,#write"; break;
}
toAsm << "\n";
}
static string getValidSymbolName(const string &S) {
string Result;
// Symbol names in Sparc assembly language have these rules:
// (a) Must match { letter | _ | . | $ } { letter | _ | . | $ | digit }*
// (b) A name beginning in "." is treated as a local name.
//
if (isdigit(S[0]))
Result = "ll";
for (unsigned i = 0; i < S.size(); ++i)
{
char C = S[i];
if (C == '_' || C == '.' || C == '$' || isalpha(C) || isdigit(C))
Result += C;
else
{
Result += '_';
Result += char('0' + ((unsigned char)C >> 4));
Result += char('0' + (C & 0xF));
}
}
return Result;
}
// getID - Return a valid identifier for the specified value. Base it on
// the name of the identifier if possible (qualified by the type), and
// use a numbered value based on prefix otherwise.
// FPrefix is always prepended to the output identifier.
//
string getID(const Value *V, const char *Prefix, const char *FPrefix = 0) {
string Result = FPrefix ? FPrefix : ""; // "Forced prefix"
Result += V->hasName() ? V->getName() : string(Prefix);
// Qualify all internal names with a unique id.
if (!isExternal(V)) {
int valId = idTable->Table.getValSlot(V);
if (valId == -1) {
GlobalIdTable::ValIdMapConstIterator I = idTable->valToIdMap.find(V);
if (I == idTable->valToIdMap.end())
valId = idTable->valToIdMap[V] = idTable->valToIdMap.size();
else
valId = I->second;
}
Result = Result + "_" + itostr(valId);
// Replace or prefix problem characters in the name
Result = getValidSymbolName(Result);
}
return Result;
}
// getID Wrappers - Ensure consistent usage...
string getID(const Function *F) {
return getID(F, "LLVMFunction_");
}
string getID(const BasicBlock *BB) {
return getID(BB, "LL", (".L_"+getID(BB->getParent())+"_").c_str());
}
string getID(const GlobalVariable *GV) {
return getID(GV, "LLVMGlobal_");
}
string getID(const Constant *CV) {
return getID(CV, "LLVMConst_", ".C_");
}
string getID(const GlobalValue *GV) {
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
return getID(V);
else if (const Function *F = dyn_cast<Function>(GV))
return getID(F);
assert(0 && "Unexpected type of GlobalValue!");
return "";
}
// ConstantExprToString() - Convert a ConstantExpr to an asm expression
// and return this as a string.
string ConstantExprToString(const ConstantExpr* CE,
const TargetMachine& target) {
string S;
switch(CE->getOpcode()) {
case Instruction::GetElementPtr:
{ // generate a symbolic expression for the byte address
const Value* ptrVal = CE->getOperand(0);
std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
const TargetData &TD = target.getTargetData();
S += "(" + valToExprString(ptrVal, target) + ") + ("
+ utostr(TD.getIndexedOffset(ptrVal->getType(),idxVec)) + ")";
break;
}
case Instruction::Cast:
// Support only non-converting casts for now, i.e., a no-op.
// This assertion is not a complete check.
assert(target.getTargetData().getTypeSize(CE->getType()) ==
target.getTargetData().getTypeSize(CE->getOperand(0)->getType()));
S += "(" + valToExprString(CE->getOperand(0), target) + ")";
break;
case Instruction::Add:
S += "(" + valToExprString(CE->getOperand(0), target) + ") + ("
+ valToExprString(CE->getOperand(1), target) + ")";
break;
default:
assert(0 && "Unsupported operator in ConstantExprToString()");
break;
}
return S;
}
// valToExprString - Helper function for ConstantExprToString().
// Appends result to argument string S.
//
string valToExprString(const Value* V, const TargetMachine& target) {
string S;
bool failed = false;
if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
S += string(CB == ConstantBool::True ? "1" : "0");
else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
S += itostr(CI->getValue());
else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
S += utostr(CI->getValue());
else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
S += ftostr(CFP->getValue());
else if (isa<ConstantPointerNull>(CV))
S += "0";
else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
S += valToExprString(CPR->getValue(), target);
else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
S += ConstantExprToString(CE, target);
else
failed = true;
} else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
S += getID(GV);
}
else
failed = true;
if (failed) {
assert(0 && "Cannot convert value to string");
S += "<illegal-value>";
}
return S;
}
};
//===----------------------------------------------------------------------===//
// SparcFunctionAsmPrinter Code
//===----------------------------------------------------------------------===//
struct SparcFunctionAsmPrinter : public FunctionPass, public AsmPrinter {
inline SparcFunctionAsmPrinter(std::ostream &os, const TargetMachine &t)
: AsmPrinter(os, t) {}
const char *getPassName() const {
return "Output Sparc Assembly for Functions";
}
virtual bool doInitialization(Module &M) {
startModule(M);
return false;
}
virtual bool runOnFunction(Function &F) {
startFunction(F);
emitFunction(F);
endFunction(F);
return false;
}
virtual bool doFinalization(Module &M) {
endModule();
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
void emitFunction(const Function &F);
private :
void emitBasicBlock(const MachineBasicBlock &MBB);
void emitMachineInst(const MachineInstr *MI);
unsigned int printOperands(const MachineInstr *MI, unsigned int opNum);
void printOneOperand(const MachineOperand &Op);
bool OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum);
bool OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum);
unsigned getOperandMask(unsigned Opcode) {
switch (Opcode) {
case V9::SUBcc: return 1 << 3; // Remove CC argument
//case BA: return 1 << 0; // Remove Arg #0, which is always null or xcc
default: return 0; // By default, don't hack operands...
}
}
};
inline bool
SparcFunctionAsmPrinter::OpIsBranchTargetLabel(const MachineInstr *MI,
unsigned int opNum) {
switch (MI->getOpCode()) {
case V9::JMPLCALL:
case V9::JMPLRET:
return (opNum == 0);
default:
return false;
}
}
inline bool
SparcFunctionAsmPrinter::OpIsMemoryAddressBase(const MachineInstr *MI,
unsigned int opNum) {
if (Target.getInstrInfo().isLoad(MI->getOpCode()))
return (opNum == 0);
else if (Target.getInstrInfo().isStore(MI->getOpCode()))
return (opNum == 1);
else
return false;
}
#define PrintOp1PlusOp2(mop1, mop2) \
printOneOperand(mop1); \
toAsm << "+"; \
printOneOperand(mop2);
unsigned int
SparcFunctionAsmPrinter::printOperands(const MachineInstr *MI,
unsigned int opNum)
{
const MachineOperand& mop = MI->getOperand(opNum);
if (OpIsBranchTargetLabel(MI, opNum))
{
PrintOp1PlusOp2(mop, MI->getOperand(opNum+1));
return 2;
}
else if (OpIsMemoryAddressBase(MI, opNum))
{
toAsm << "[";
PrintOp1PlusOp2(mop, MI->getOperand(opNum+1));
toAsm << "]";
return 2;
}
else
{
printOneOperand(mop);
return 1;
}
}
void
SparcFunctionAsmPrinter::printOneOperand(const MachineOperand &mop)
{
bool needBitsFlag = true;
if (mop.opHiBits32())
toAsm << "%lm(";
else if (mop.opLoBits32())
toAsm << "%lo(";
else if (mop.opHiBits64())
toAsm << "%hh(";
else if (mop.opLoBits64())
toAsm << "%hm(";
else
needBitsFlag = false;
switch (mop.getType())
{
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_CCRegister:
case MachineOperand::MO_MachineRegister:
{
int RegNum = (int)mop.getAllocatedRegNum();
// better to print code with NULL registers than to die
if (RegNum == Target.getRegInfo().getInvalidRegNum()) {
toAsm << "<NULL VALUE>";
} else {
toAsm << "%" << Target.getRegInfo().getUnifiedRegName(RegNum);
}
break;
}
case MachineOperand::MO_PCRelativeDisp:
{
const Value *Val = mop.getVRegValue();
assert(Val && "\tNULL Value in SparcFunctionAsmPrinter");
if (const BasicBlock *BB = dyn_cast<const BasicBlock>(Val))
toAsm << getID(BB);
else if (const Function *M = dyn_cast<Function>(Val))
toAsm << getID(M);
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val))
toAsm << getID(GV);
else if (const Constant *CV = dyn_cast<Constant>(Val))
toAsm << getID(CV);
else
assert(0 && "Unrecognized value in SparcFunctionAsmPrinter");
break;
}
case MachineOperand::MO_SignExtendedImmed:
toAsm << mop.getImmedValue();
break;
case MachineOperand::MO_UnextendedImmed:
toAsm << (uint64_t) mop.getImmedValue();
break;
default:
toAsm << mop; // use dump field
break;
}
if (needBitsFlag)
toAsm << ")";
}
void
SparcFunctionAsmPrinter::emitMachineInst(const MachineInstr *MI)
{
unsigned Opcode = MI->getOpCode();
if (Target.getInstrInfo().isDummyPhiInstr(Opcode))
return; // IGNORE PHI NODES
toAsm << "\t" << Target.getInstrInfo().getName(Opcode) << "\t";
unsigned Mask = getOperandMask(Opcode);
bool NeedComma = false;
unsigned N = 1;
for (unsigned OpNum = 0; OpNum < MI->getNumOperands(); OpNum += N)
if (! ((1 << OpNum) & Mask)) { // Ignore this operand?
if (NeedComma) toAsm << ", "; // Handle comma outputing
NeedComma = true;
N = printOperands(MI, OpNum);
} else
N = 1;
toAsm << "\n";
}
void
SparcFunctionAsmPrinter::emitBasicBlock(const MachineBasicBlock &MBB)
{
// Emit a label for the basic block
toAsm << getID(MBB.getBasicBlock()) << ":\n";
// Loop over all of the instructions in the basic block...
for (MachineBasicBlock::const_iterator MII = MBB.begin(), MIE = MBB.end();
MII != MIE; ++MII)
emitMachineInst(*MII);
toAsm << "\n"; // Seperate BB's with newlines
}
void
SparcFunctionAsmPrinter::emitFunction(const Function &F)
{
string methName = getID(&F);
toAsm << "!****** Outputing Function: " << methName << " ******\n";
enterSection(AsmPrinter::Text);
toAsm << "\t.align\t4\n\t.global\t" << methName << "\n";
//toAsm << "\t.type\t" << methName << ",#function\n";
toAsm << "\t.type\t" << methName << ", 2\n";
toAsm << methName << ":\n";
// Output code for all of the basic blocks in the function...
MachineFunction &MF = MachineFunction::get(&F);
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E;++I)
emitBasicBlock(*I);
// Output a .size directive so the debugger knows the extents of the function
toAsm << ".EndOf_" << methName << ":\n\t.size "
<< methName << ", .EndOf_"
<< methName << "-" << methName << "\n";
// Put some spaces between the functions
toAsm << "\n\n";
}
} // End anonymous namespace
Pass *UltraSparc::getFunctionAsmPrinterPass(std::ostream &Out) {
return new SparcFunctionAsmPrinter(Out, *this);
}
//===----------------------------------------------------------------------===//
// SparcFunctionAsmPrinter Code
//===----------------------------------------------------------------------===//
namespace {
class SparcModuleAsmPrinter : public Pass, public AsmPrinter {
public:
SparcModuleAsmPrinter(std::ostream &os, TargetMachine &t)
: AsmPrinter(os, t) {}
const char *getPassName() const { return "Output Sparc Assembly for Module"; }
virtual bool run(Module &M) {
startModule(M);
emitGlobalsAndConstants(M);
endModule();
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
private:
void emitGlobalsAndConstants (const Module &M);
void printGlobalVariable (const GlobalVariable *GV);
void PrintZeroBytesToPad (int numBytes);
void printSingleConstantValue (const Constant* CV);
void printConstantValueOnly (const Constant* CV, int numPadBytes = 0);
void printConstant (const Constant* CV, string valID = "");
static void FoldConstants (const Module &M,
hash_set<const Constant*> &moduleConstants);
};
// Can we treat the specified array as a string? Only if it is an array of
// ubytes or non-negative sbytes.
//
static bool isStringCompatible(const ConstantArray *CVA) {
const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
if (ETy == Type::UByteTy) return true;
if (ETy != Type::SByteTy) return false;
for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
return false;
return true;
}
// toOctal - Convert the low order bits of X into an octal letter
static inline char toOctal(int X) {
return (X&7)+'0';
}
// getAsCString - Return the specified array as a C compatible string, only if
// the predicate isStringCompatible is true.
//
static string getAsCString(const ConstantArray *CVA) {
assert(isStringCompatible(CVA) && "Array is not string compatible!");
string Result;
const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
Result = "\"";
for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
unsigned char C = (ETy == Type::SByteTy) ?
(unsigned char)cast<ConstantSInt>(CVA->getOperand(i))->getValue() :
(unsigned char)cast<ConstantUInt>(CVA->getOperand(i))->getValue();
if (C == '"') {
Result += "\\\"";
} else if (C == '\\') {
Result += "\\\\";
} else if (isprint(C)) {
Result += C;
} else {
switch(C) {
case '\a': Result += "\\a"; break;
case '\b': Result += "\\b"; break;
case '\f': Result += "\\f"; break;
case '\n': Result += "\\n"; break;
case '\r': Result += "\\r"; break;
case '\t': Result += "\\t"; break;
case '\v': Result += "\\v"; break;
default:
Result += '\\';
Result += toOctal(C >> 6);
Result += toOctal(C >> 3);
Result += toOctal(C >> 0);
break;
}
}
}
Result += "\"";
return Result;
}
inline bool
ArrayTypeIsString(const ArrayType* arrayType)
{
return (arrayType->getElementType() == Type::UByteTy ||
arrayType->getElementType() == Type::SByteTy);
}
inline const string
TypeToDataDirective(const Type* type)
{
switch(type->getPrimitiveID())
{
case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
return ".byte";
case Type::UShortTyID: case Type::ShortTyID:
return ".half";
case Type::UIntTyID: case Type::IntTyID:
return ".word";
case Type::ULongTyID: case Type::LongTyID: case Type::PointerTyID:
return ".xword";
case Type::FloatTyID:
return ".word";
case Type::DoubleTyID:
return ".xword";
case Type::ArrayTyID:
if (ArrayTypeIsString((ArrayType*) type))
return ".ascii";
else
return "<InvaliDataTypeForPrinting>";
default:
return "<InvaliDataTypeForPrinting>";
}
}
// Get the size of the type
//
inline unsigned int
TypeToSize(const Type* type, const TargetMachine& target)
{
return target.findOptimalStorageSize(type);
}
// Get the size of the constant for the given target.
// If this is an unsized array, return 0.
//
inline unsigned int
ConstantToSize(const Constant* CV, const TargetMachine& target)
{
if (const ConstantArray* CVA = dyn_cast<ConstantArray>(CV))
{
const ArrayType *aty = cast<ArrayType>(CVA->getType());
if (ArrayTypeIsString(aty))
return 1 + CVA->getNumOperands();
}
return TypeToSize(CV->getType(), target);
}
// Align data larger than one L1 cache line on L1 cache line boundaries.
// Align all smaller data on the next higher 2^x boundary (4, 8, ...).
//
inline unsigned int
SizeToAlignment(unsigned int size, const TargetMachine& target)
{
unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1);
if (size > (unsigned) cacheLineSize / 2)
return cacheLineSize;
else
for (unsigned sz=1; /*no condition*/; sz *= 2)
if (sz >= size)
return sz;
}
// Get the size of the type and then use SizeToAlignment.
//
inline unsigned int
TypeToAlignment(const Type* type, const TargetMachine& target)
{
return SizeToAlignment(TypeToSize(type, target), target);
}
// Get the size of the constant and then use SizeToAlignment.
// Handles strings as a special case;
inline unsigned int
ConstantToAlignment(const Constant* CV, const TargetMachine& target)
{
if (const ConstantArray* CVA = dyn_cast<ConstantArray>(CV))
if (ArrayTypeIsString(cast<ArrayType>(CVA->getType())))
return SizeToAlignment(1 + CVA->getNumOperands(), target);
return TypeToAlignment(CV->getType(), target);
}
// Print a single constant value.
void
SparcModuleAsmPrinter::printSingleConstantValue(const Constant* CV)
{
assert(CV->getType() != Type::VoidTy &&
CV->getType() != Type::TypeTy &&
CV->getType() != Type::LabelTy &&
"Unexpected type for Constant");
assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
&& "Aggregate types should be handled outside this function");
toAsm << "\t" << TypeToDataDirective(CV->getType()) << "\t";
if (CV->getType()->isPrimitiveType())
{
if (CV->getType()->isFloatingPoint()) {
// FP Constants are printed as integer constants to avoid losing
// precision...
double Val = cast<ConstantFP>(CV)->getValue();
if (CV->getType() == Type::FloatTy) {
float FVal = (float)Val;
char *ProxyPtr = (char*)&FVal; // Abide by C TBAA rules
toAsm << *(unsigned int*)ProxyPtr;
} else if (CV->getType() == Type::DoubleTy) {
char *ProxyPtr = (char*)&Val; // Abide by C TBAA rules
toAsm << *(uint64_t*)ProxyPtr;
} else {
assert(0 && "Unknown floating point type!");
}
toAsm << "\t! " << CV->getType()->getDescription()
<< " value: " << Val << "\n";
} else {
WriteAsOperand(toAsm, CV, false, false) << "\n";
}
}
else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
{ // This is a constant address for a global variable or method.
// Use the name of the variable or method as the address value.
toAsm << getID(CPR->getValue()) << "\n";
}
else if (isa<ConstantPointerNull>(CV))
{ // Null pointer value
toAsm << "0\n";
}
else if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
{ // Constant expression built from operators, constants, and symbolic addrs
toAsm << ConstantExprToString(CE, Target) << "\n";
}
else
{
assert(0 && "Unknown elementary type for constant");
}
}
void
SparcModuleAsmPrinter::PrintZeroBytesToPad(int numBytes)
{
for ( ; numBytes >= 8; numBytes -= 8)
printSingleConstantValue(Constant::getNullValue(Type::ULongTy));
if (numBytes >= 4)
{
printSingleConstantValue(Constant::getNullValue(Type::UIntTy));
numBytes -= 4;
}
while (numBytes--)
printSingleConstantValue(Constant::getNullValue(Type::UByteTy));
}
// Print a constant value or values (it may be an aggregate).
// Uses printSingleConstantValue() to print each individual value.
void
SparcModuleAsmPrinter::printConstantValueOnly(const Constant* CV,
int numPadBytes /* = 0*/)
{
const ConstantArray *CVA = dyn_cast<ConstantArray>(CV);
if (numPadBytes)
PrintZeroBytesToPad(numPadBytes);
if (CVA && isStringCompatible(CVA))
{ // print the string alone and return
toAsm << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n";
}
else if (CVA)
{ // Not a string. Print the values in successive locations
const std::vector<Use> &constValues = CVA->getValues();
for (unsigned i=0; i < constValues.size(); i++)
printConstantValueOnly(cast<Constant>(constValues[i].get()));
}
else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
{ // Print the fields in successive locations. Pad to align if needed!
const StructLayout *cvsLayout =
Target.getTargetData().getStructLayout(CVS->getType());
const std::vector<Use>& constValues = CVS->getValues();
unsigned sizeSoFar = 0;
for (unsigned i=0, N = constValues.size(); i < N; i++)
{
const Constant* field = cast<Constant>(constValues[i].get());
// Check if padding is needed and insert one or more 0s.
unsigned fieldSize =
Target.getTargetData().getTypeSize(field->getType());
int padSize = ((i == N-1? cvsLayout->StructSize
: cvsLayout->MemberOffsets[i+1])
- cvsLayout->MemberOffsets[i]) - fieldSize;
sizeSoFar += (fieldSize + padSize);
// Now print the actual field value
printConstantValueOnly(field, padSize);
}
assert(sizeSoFar == cvsLayout->StructSize &&
"Layout of constant struct may be incorrect!");
}
else
printSingleConstantValue(CV);
}
// Print a constant (which may be an aggregate) prefixed by all the
// appropriate directives. Uses printConstantValueOnly() to print the
// value or values.
void
SparcModuleAsmPrinter::printConstant(const Constant* CV, string valID)
{
if (valID.length() == 0)
valID = getID(CV);
toAsm << "\t.align\t" << ConstantToAlignment(CV, Target) << "\n";
// Print .size and .type only if it is not a string.
const ConstantArray *CVA = dyn_cast<ConstantArray>(CV);
if (CVA && isStringCompatible(CVA))
{ // print it as a string and return
toAsm << valID << ":\n";
toAsm << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n";
return;
}
toAsm << "\t.type" << "\t" << valID << ",#object\n";
unsigned int constSize = ConstantToSize(CV, Target);
if (constSize)
toAsm << "\t.size" << "\t" << valID << "," << constSize << "\n";
toAsm << valID << ":\n";
printConstantValueOnly(CV);
}
void SparcModuleAsmPrinter::FoldConstants(const Module &M,
hash_set<const Constant*> &MC) {
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
const hash_set<const Constant*> &pool =
MachineFunction::get(I).getInfo()->getConstantPoolValues();
MC.insert(pool.begin(), pool.end());
}
}
void SparcModuleAsmPrinter::printGlobalVariable(const GlobalVariable* GV)
{
if (GV->hasExternalLinkage())
toAsm << "\t.global\t" << getID(GV) << "\n";
if (GV->hasInitializer() && ! GV->getInitializer()->isNullValue())
printConstant(GV->getInitializer(), getID(GV));
else {
toAsm << "\t.align\t" << TypeToAlignment(GV->getType()->getElementType(),
Target) << "\n";
toAsm << "\t.type\t" << getID(GV) << ",#object\n";
toAsm << "\t.reserve\t" << getID(GV) << ","
<< TypeToSize(GV->getType()->getElementType(), Target)
<< "\n";
}
}
void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module &M) {
// First, get the constants there were marked by the code generator for
// inclusion in the assembly code data area and fold them all into a
// single constant pool since there may be lots of duplicates. Also,
// lets force these constants into the slot table so that we can get
// unique names for unnamed constants also.
//
hash_set<const Constant*> moduleConstants;
FoldConstants(M, moduleConstants);
// Output constants spilled to memory
enterSection(AsmPrinter::ReadOnlyData);
for (hash_set<const Constant*>::const_iterator I = moduleConstants.begin(),
E = moduleConstants.end(); I != E; ++I)
printConstant(*I);
// Output global variables...
for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI)
if (! GI->isExternal()) {
assert(GI->hasInitializer());
if (GI->isConstant())
enterSection(AsmPrinter::ReadOnlyData); // read-only, initialized data
else if (GI->getInitializer()->isNullValue())
enterSection(AsmPrinter::ZeroInitRWData); // read-write zero data
else
enterSection(AsmPrinter::InitRWData); // read-write non-zero data
printGlobalVariable(GI);
}
toAsm << "\n";
}
} // End anonymous namespace
Pass *UltraSparc::getModuleAsmPrinterPass(std::ostream &Out) {
return new SparcModuleAsmPrinter(Out, *this);
}