2012-02-01 22:13:57 +00:00
|
|
|
//===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This implements a top-down list scheduler, using standard algorithms.
|
|
|
|
// The basic approach uses a priority queue of available nodes to schedule.
|
|
|
|
// One at a time, nodes are taken from the priority queue (thus in priority
|
|
|
|
// order), checked for legality to schedule, and emitted if legal.
|
|
|
|
//
|
|
|
|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
|
|
|
// pipeline or resource constraints) or because an input to the instruction has
|
|
|
|
// not completed execution.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "pre-RA-sched"
|
2012-12-03 16:50:05 +00:00
|
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
2012-02-01 22:13:57 +00:00
|
|
|
#include "ScheduleDAGSDNodes.h"
|
2012-12-03 16:50:05 +00:00
|
|
|
#include "llvm/ADT/Statistic.h"
|
2012-02-01 22:13:57 +00:00
|
|
|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
|
2012-12-03 16:50:05 +00:00
|
|
|
#include "llvm/CodeGen/ResourcePriorityQueue.h"
|
2012-02-01 22:13:57 +00:00
|
|
|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
|
|
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
2013-01-02 11:36:10 +00:00
|
|
|
#include "llvm/IR/DataLayout.h"
|
2012-02-01 22:13:57 +00:00
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2012-12-03 16:50:05 +00:00
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
2012-02-01 22:13:57 +00:00
|
|
|
#include <climits>
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
STATISTIC(NumNoops , "Number of noops inserted");
|
|
|
|
STATISTIC(NumStalls, "Number of pipeline stalls");
|
|
|
|
|
|
|
|
static RegisterScheduler
|
|
|
|
VLIWScheduler("vliw-td", "VLIW scheduler",
|
|
|
|
createVLIWDAGScheduler);
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This
|
|
|
|
/// supports / top-down scheduling.
|
|
|
|
///
|
|
|
|
class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
|
|
|
|
private:
|
|
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
|
|
///
|
|
|
|
SchedulingPriorityQueue *AvailableQueue;
|
|
|
|
|
|
|
|
/// PendingQueue - This contains all of the instructions whose operands have
|
|
|
|
/// been issued, but their results are not ready yet (due to the latency of
|
|
|
|
/// the operation). Once the operands become available, the instruction is
|
|
|
|
/// added to the AvailableQueue.
|
|
|
|
std::vector<SUnit*> PendingQueue;
|
|
|
|
|
|
|
|
/// HazardRec - The hazard recognizer to use.
|
|
|
|
ScheduleHazardRecognizer *HazardRec;
|
|
|
|
|
|
|
|
/// AA - AliasAnalysis for making memory reference queries.
|
|
|
|
AliasAnalysis *AA;
|
|
|
|
|
|
|
|
public:
|
|
|
|
ScheduleDAGVLIW(MachineFunction &mf,
|
|
|
|
AliasAnalysis *aa,
|
|
|
|
SchedulingPriorityQueue *availqueue)
|
|
|
|
: ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
|
|
|
|
|
|
|
|
const TargetMachine &tm = mf.getTarget();
|
|
|
|
HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
~ScheduleDAGVLIW() {
|
|
|
|
delete HazardRec;
|
|
|
|
delete AvailableQueue;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Schedule();
|
|
|
|
|
|
|
|
private:
|
|
|
|
void releaseSucc(SUnit *SU, const SDep &D);
|
|
|
|
void releaseSuccessors(SUnit *SU);
|
|
|
|
void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
|
|
|
void listScheduleTopDown();
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
|
|
/// Schedule - Schedule the DAG using list scheduling.
|
|
|
|
void ScheduleDAGVLIW::Schedule() {
|
|
|
|
DEBUG(dbgs()
|
|
|
|
<< "********** List Scheduling BB#" << BB->getNumber()
|
|
|
|
<< " '" << BB->getName() << "' **********\n");
|
|
|
|
|
|
|
|
// Build the scheduling graph.
|
|
|
|
BuildSchedGraph(AA);
|
|
|
|
|
|
|
|
AvailableQueue->initNodes(SUnits);
|
|
|
|
|
|
|
|
listScheduleTopDown();
|
|
|
|
|
|
|
|
AvailableQueue->releaseState();
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Top-Down Scheduling
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
|
|
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
|
|
|
|
void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
|
|
|
|
SUnit *SuccSU = D.getSUnit();
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
if (SuccSU->NumPredsLeft == 0) {
|
|
|
|
dbgs() << "*** Scheduling failed! ***\n";
|
|
|
|
SuccSU->dump(this);
|
|
|
|
dbgs() << " has been released too many times!\n";
|
|
|
|
llvm_unreachable(0);
|
|
|
|
}
|
|
|
|
#endif
|
2012-11-12 19:28:57 +00:00
|
|
|
assert(!D.isWeak() && "unexpected artificial DAG edge");
|
|
|
|
|
2012-02-01 22:13:57 +00:00
|
|
|
--SuccSU->NumPredsLeft;
|
|
|
|
|
|
|
|
SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
|
|
|
|
|
|
|
|
// If all the node's predecessors are scheduled, this node is ready
|
|
|
|
// to be scheduled. Ignore the special ExitSU node.
|
|
|
|
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
|
|
|
|
PendingQueue.push_back(SuccSU);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
|
|
|
|
// Top down: release successors.
|
|
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
|
|
I != E; ++I) {
|
|
|
|
assert(!I->isAssignedRegDep() &&
|
|
|
|
"The list-td scheduler doesn't yet support physreg dependencies!");
|
|
|
|
|
|
|
|
releaseSucc(SU, *I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
|
|
/// the Available queue.
|
|
|
|
void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
|
|
|
DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
|
|
|
|
DEBUG(SU->dump(this));
|
|
|
|
|
|
|
|
Sequence.push_back(SU);
|
|
|
|
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
|
|
|
|
SU->setDepthToAtLeast(CurCycle);
|
|
|
|
|
|
|
|
releaseSuccessors(SU);
|
|
|
|
SU->isScheduled = true;
|
2012-03-07 23:00:49 +00:00
|
|
|
AvailableQueue->scheduledNode(SU);
|
2012-02-01 22:13:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// listScheduleTopDown - The main loop of list scheduling for top-down
|
|
|
|
/// schedulers.
|
|
|
|
void ScheduleDAGVLIW::listScheduleTopDown() {
|
|
|
|
unsigned CurCycle = 0;
|
|
|
|
|
|
|
|
// Release any successors of the special Entry node.
|
|
|
|
releaseSuccessors(&EntrySU);
|
|
|
|
|
|
|
|
// All leaves to AvailableQueue.
|
|
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
|
|
// It is available if it has no predecessors.
|
|
|
|
if (SUnits[i].Preds.empty()) {
|
|
|
|
AvailableQueue->push(&SUnits[i]);
|
|
|
|
SUnits[i].isAvailable = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// While AvailableQueue is not empty, grab the node with the highest
|
|
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
|
|
std::vector<SUnit*> NotReady;
|
|
|
|
Sequence.reserve(SUnits.size());
|
|
|
|
while (!AvailableQueue->empty() || !PendingQueue.empty()) {
|
|
|
|
// Check to see if any of the pending instructions are ready to issue. If
|
|
|
|
// so, add them to the available queue.
|
|
|
|
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
|
|
|
|
if (PendingQueue[i]->getDepth() == CurCycle) {
|
|
|
|
AvailableQueue->push(PendingQueue[i]);
|
|
|
|
PendingQueue[i]->isAvailable = true;
|
|
|
|
PendingQueue[i] = PendingQueue.back();
|
|
|
|
PendingQueue.pop_back();
|
|
|
|
--i; --e;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are no instructions available, don't try to issue anything, and
|
|
|
|
// don't advance the hazard recognizer.
|
|
|
|
if (AvailableQueue->empty()) {
|
|
|
|
// Reset DFA state.
|
2012-03-07 23:00:49 +00:00
|
|
|
AvailableQueue->scheduledNode(0);
|
2012-02-01 22:13:57 +00:00
|
|
|
++CurCycle;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
SUnit *FoundSUnit = 0;
|
|
|
|
|
|
|
|
bool HasNoopHazards = false;
|
|
|
|
while (!AvailableQueue->empty()) {
|
|
|
|
SUnit *CurSUnit = AvailableQueue->pop();
|
|
|
|
|
|
|
|
ScheduleHazardRecognizer::HazardType HT =
|
|
|
|
HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
|
|
|
|
if (HT == ScheduleHazardRecognizer::NoHazard) {
|
|
|
|
FoundSUnit = CurSUnit;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remember if this is a noop hazard.
|
|
|
|
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
|
|
|
|
|
|
|
|
NotReady.push_back(CurSUnit);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
|
|
if (!NotReady.empty()) {
|
|
|
|
AvailableQueue->push_all(NotReady);
|
|
|
|
NotReady.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we found a node to schedule, do it now.
|
|
|
|
if (FoundSUnit) {
|
|
|
|
scheduleNodeTopDown(FoundSUnit, CurCycle);
|
|
|
|
HazardRec->EmitInstruction(FoundSUnit);
|
|
|
|
|
|
|
|
// If this is a pseudo-op node, we don't want to increment the current
|
|
|
|
// cycle.
|
|
|
|
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
|
|
|
|
++CurCycle;
|
|
|
|
} else if (!HasNoopHazards) {
|
|
|
|
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
|
|
|
// the current cycle and try again.
|
|
|
|
DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
|
|
|
|
HazardRec->AdvanceCycle();
|
|
|
|
++NumStalls;
|
|
|
|
++CurCycle;
|
|
|
|
} else {
|
|
|
|
// Otherwise, we have no instructions to issue and we have instructions
|
|
|
|
// that will fault if we don't do this right. This is the case for
|
|
|
|
// processors without pipeline interlocks and other cases.
|
|
|
|
DEBUG(dbgs() << "*** Emitting noop\n");
|
|
|
|
HazardRec->EmitNoop();
|
|
|
|
Sequence.push_back(0); // NULL here means noop
|
|
|
|
++NumNoops;
|
|
|
|
++CurCycle;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
2012-03-07 05:21:36 +00:00
|
|
|
VerifyScheduledSequence(/*isBottomUp=*/false);
|
2012-02-01 22:13:57 +00:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Public Constructor Functions
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// createVLIWDAGScheduler - This creates a top-down list scheduler.
|
|
|
|
ScheduleDAGSDNodes *
|
|
|
|
llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
|
|
|
|
return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));
|
|
|
|
}
|