llvm-6502/include/llvm/ADT/SparseBitVector.h

863 lines
25 KiB
C
Raw Normal View History

//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Daniel Berlin and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseBitVector class. See the doxygen comment for
// SparseBitVector for more details on the algorithm used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSEBITVECTOR_H
#define LLVM_ADT_SPARSEBITVECTOR_H
#include <cassert>
#include <cstring>
#include <algorithm>
#include "llvm/Support/DataTypes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/ilist"
namespace llvm {
/// SparseBitVector is an implementation of a bitvector that is sparse by only
/// storing the elements that have non-zero bits set. In order to make this
/// fast for the most common cases, SparseBitVector is implemented as a linked
/// list of SparseBitVectorElements. We maintain a pointer to the last
/// SparseBitVectorElement accessed (in the form of a list iterator), in order
/// to make multiple in-order test/set constant time after the first one is
/// executed. Note that using vectors to store SparseBitVectorElement's does
/// not work out very well because it causes insertion in the middle to take
/// enormous amounts of time with a large amount of bits. Other structures that
/// have better worst cases for insertion in the middle (various balanced trees,
/// etc) do not perform as well in practice as a linked list with this iterator
/// kept up to date. They are also significantly more memory intensive.
template <unsigned ElementSize = 128>
struct SparseBitVectorElement {
public:
typedef unsigned long BitWord;
enum {
BITWORD_SIZE = sizeof(BitWord) * 8,
BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
BITS_PER_ELEMENT = ElementSize
};
SparseBitVectorElement<ElementSize> *getNext() const {
return Next;
}
SparseBitVectorElement<ElementSize> *getPrev() const {
return Prev;
}
void setNext(SparseBitVectorElement<ElementSize> *RHS) {
Next = RHS;
}
void setPrev(SparseBitVectorElement<ElementSize> *RHS) {
Prev = RHS;
}
private:
SparseBitVectorElement<ElementSize> *Next;
SparseBitVectorElement<ElementSize> *Prev;
// Index of Element in terms of where first bit starts.
unsigned ElementIndex;
BitWord Bits[BITWORDS_PER_ELEMENT];
// Needed for sentinels
SparseBitVectorElement() {
ElementIndex = ~0UL;
memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
}
friend struct ilist_traits<SparseBitVectorElement<ElementSize> >;
public:
explicit SparseBitVectorElement(unsigned Idx) {
ElementIndex = Idx;
memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
}
~SparseBitVectorElement() {
}
// Copy ctor.
SparseBitVectorElement(const SparseBitVectorElement &RHS) {
ElementIndex = RHS.ElementIndex;
std::copy(&RHS.Bits[0], &RHS.Bits[BITWORDS_PER_ELEMENT], Bits);
}
// Comparison.
bool operator==(const SparseBitVectorElement &RHS) const {
if (ElementIndex != RHS.ElementIndex)
return false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != RHS.Bits[i])
return false;
return true;
}
bool operator!=(const SparseBitVectorElement &RHS) const {
return !(*this == RHS);
}
// Return the bits that make up word Idx in our element.
BitWord word(unsigned Idx) const {
assert (Idx < BITWORDS_PER_ELEMENT);
return Bits[Idx];
}
unsigned index() const {
return ElementIndex;
}
bool empty() const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i])
return false;
return true;
}
void set(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
}
bool test_and_set (unsigned Idx) {
bool old = test(Idx);
if (!old) {
set(Idx);
return true;
}
return false;
}
void reset(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
}
bool test(unsigned Idx) const {
return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
}
unsigned count() const {
unsigned NumBits = 0;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (sizeof(BitWord) == 4)
NumBits += CountPopulation_32(Bits[i]);
else if (sizeof(BitWord) == 8)
NumBits += CountPopulation_64(Bits[i]);
else
assert(0 && "Unsupported!");
return NumBits;
}
/// find_first - Returns the index of the first set bit.
int find_first() const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != 0) {
if (sizeof(BitWord) == 4)
return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
else if (sizeof(BitWord) == 8)
return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
else
assert(0 && "Unsupported!");
}
assert(0 && "Illegal empty element");
}
/// find_next - Returns the index of the next set bit starting from the
/// "Curr" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Curr) const {
if (Curr >= BITS_PER_ELEMENT)
return -1;
unsigned WordPos = Curr / BITWORD_SIZE;
unsigned BitPos = Curr % BITWORD_SIZE;
BitWord Copy = Bits[WordPos];
assert (WordPos <= BITWORDS_PER_ELEMENT
&& "Word Position outside of element");
// Mask off previous bits.
Copy &= ~0L << BitPos;
if (Copy != 0) {
if (sizeof(BitWord) == 4)
return WordPos * BITWORD_SIZE + CountTrailingZeros_32(Copy);
else if (sizeof(BitWord) == 8)
return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
else
assert(0 && "Unsupported!");
}
// Check subsequent words.
for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != 0) {
if (sizeof(BitWord) == 4)
return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
else if (sizeof(BitWord) == 8)
return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
else
assert(0 && "Unsupported!");
}
return -1;
}
// Union this element with RHS and return true if this one changed.
bool unionWith(const SparseBitVectorElement &RHS) {
bool changed = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] |= RHS.Bits[i];
if (!changed && old != Bits[i])
changed = true;
}
return changed;
}
// Return true if we have any bits in common with RHS
bool intersects(const SparseBitVectorElement &RHS) const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
if (RHS.Bits[i] & Bits[i])
return true;
}
return false;
}
// Intersect this Element with RHS and return true if this one changed.
// BecameZero is set to true if this element became all-zero bits.
bool intersectWith(const SparseBitVectorElement &RHS,
bool &BecameZero) {
bool changed = false;
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] &= RHS.Bits[i];
if (Bits[i] != 0)
allzero = false;
if (!changed && old != Bits[i])
changed = true;
}
BecameZero = allzero;
return changed;
}
// Intersect this Element with the complement of RHS and return true if this
// one changed. BecameZero is set to true if this element became all-zero
// bits.
bool intersectWithComplement(const SparseBitVectorElement &RHS,
bool &BecameZero) {
bool changed = false;
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] &= ~RHS.Bits[i];
if (Bits[i] != 0)
allzero = false;
if (!changed && old != Bits[i])
changed = true;
}
BecameZero = allzero;
return changed;
}
// Three argument version of intersectWithComplement that intersects
// RHS1 & ~RHS2 into this element
void intersectWithComplement(const SparseBitVectorElement &RHS1,
const SparseBitVectorElement &RHS2,
bool &BecameZero) {
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i];
if (Bits[i] != 0)
allzero = false;
}
BecameZero = allzero;
}
// Get a hash value for this element;
uint64_t getHashValue() const {
uint64_t HashVal = 0;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
HashVal ^= Bits[i];
}
return HashVal;
}
};
template <unsigned ElementSize = 128>
class SparseBitVector {
typedef ilist<SparseBitVectorElement<ElementSize> > ElementList;
typedef typename ElementList::iterator ElementListIter;
typedef typename ElementList::const_iterator ElementListConstIter;
enum {
BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
};
// Pointer to our current Element.
ElementListIter CurrElementIter;
ElementList Elements;
// This is like std::lower_bound, except we do linear searching from the
// current position.
ElementListIter FindLowerBound(unsigned ElementIndex) {
if (Elements.empty()) {
CurrElementIter = Elements.begin();
return Elements.begin();
}
// Make sure our current iterator is valid.
if (CurrElementIter == Elements.end())
--CurrElementIter;
// Search from our current iterator, either backwards or forwards,
// depending on what element we are looking for.
ElementListIter ElementIter = CurrElementIter;
if (CurrElementIter->index() == ElementIndex) {
return ElementIter;
} else if (CurrElementIter->index() > ElementIndex) {
while (ElementIter != Elements.begin()
&& ElementIter->index() > ElementIndex)
--ElementIter;
} else {
while (ElementIter != Elements.end() &&
ElementIter->index() < ElementIndex)
++ElementIter;
}
CurrElementIter = ElementIter;
return ElementIter;
}
// Iterator to walk set bits in the bitmap. This iterator is a lot uglier
// than it would be, in order to be efficient.
class SparseBitVectorIterator {
private:
bool AtEnd;
const SparseBitVector<ElementSize> *BitVector;
// Current element inside of bitmap.
ElementListConstIter Iter;
// Current bit number inside of our bitmap.
unsigned BitNumber;
// Current word number inside of our element.
unsigned WordNumber;
// Current bits from the element.
typename SparseBitVectorElement<ElementSize>::BitWord Bits;
// Move our iterator to the first non-zero bit in the bitmap.
void AdvanceToFirstNonZero() {
if (AtEnd)
return;
if (BitVector->Elements.empty()) {
AtEnd = true;
return;
}
Iter = BitVector->Elements.begin();
BitNumber = Iter->index() * ElementSize;
unsigned BitPos = Iter->find_first();
BitNumber += BitPos;
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= BitPos % BITWORD_SIZE;
}
// Move our iterator to the next non-zero bit.
void AdvanceToNextNonZero() {
if (AtEnd)
return;
while (Bits && !(Bits & 1)) {
Bits >>= 1;
BitNumber += 1;
}
// See if we ran out of Bits in this word.
if (!Bits) {
int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ;
// If we ran out of set bits in this element, move to next element.
if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
++Iter;
WordNumber = 0;
// We may run out of elements in the bitmap.
if (Iter == BitVector->Elements.end()) {
AtEnd = true;
return;
}
// Set up for next non zero word in bitmap.
BitNumber = Iter->index() * ElementSize;
NextSetBitNumber = Iter->find_first();
BitNumber += NextSetBitNumber;
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= NextSetBitNumber % BITWORD_SIZE;
} else {
WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= NextSetBitNumber % BITWORD_SIZE;
BitNumber = Iter->index() * ElementSize;
BitNumber += NextSetBitNumber;
}
}
}
public:
// Preincrement.
inline SparseBitVectorIterator& operator++() {
++BitNumber;
Bits >>= 1;
AdvanceToNextNonZero();
return *this;
}
// Postincrement.
inline SparseBitVectorIterator operator++(int) {
SparseBitVectorIterator tmp = *this;
++*this;
return tmp;
}
// Return the current set bit number.
unsigned operator*() const {
return BitNumber;
}
bool operator==(const SparseBitVectorIterator &RHS) const {
// If they are both at the end, ignore the rest of the fields.
if (AtEnd && RHS.AtEnd)
return true;
// Otherwise they are the same if they have the same bit number and
// bitmap.
return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
}
bool operator!=(const SparseBitVectorIterator &RHS) const {
return !(*this == RHS);
}
SparseBitVectorIterator(): BitVector(NULL) {
}
SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS,
bool end = false):BitVector(RHS) {
Iter = BitVector->Elements.begin();
BitNumber = 0;
Bits = 0;
WordNumber = ~0;
AtEnd = end;
AdvanceToFirstNonZero();
}
};
public:
typedef SparseBitVectorIterator iterator;
SparseBitVector () {
CurrElementIter = Elements.begin ();
}
~SparseBitVector() {
}
// SparseBitVector copy ctor.
SparseBitVector(const SparseBitVector &RHS) {
ElementListConstIter ElementIter = RHS.Elements.begin();
while (ElementIter != RHS.Elements.end()) {
Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
++ElementIter;
}
CurrElementIter = Elements.begin ();
}
// Test, Reset, and Set a bit in the bitmap.
bool test(unsigned Idx) {
if (Elements.empty())
return false;
unsigned ElementIndex = Idx / ElementSize;
ElementListIter ElementIter = FindLowerBound(ElementIndex);
// If we can't find an element that is supposed to contain this bit, there
// is nothing more to do.
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex)
return false;
return ElementIter->test(Idx % ElementSize);
}
void reset(unsigned Idx) {
if (Elements.empty())
return;
unsigned ElementIndex = Idx / ElementSize;
ElementListIter ElementIter = FindLowerBound(ElementIndex);
// If we can't find an element that is supposed to contain this bit, there
// is nothing more to do.
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex)
return;
ElementIter->reset(Idx % ElementSize);
// When the element is zeroed out, delete it.
if (ElementIter->empty()) {
++CurrElementIter;
Elements.erase(ElementIter);
}
}
void set(unsigned Idx) {
unsigned ElementIndex = Idx / ElementSize;
SparseBitVectorElement<ElementSize> *Element;
ElementListIter ElementIter;
if (Elements.empty()) {
Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
ElementIter = Elements.insert(Elements.end(), Element);
} else {
ElementIter = FindLowerBound(ElementIndex);
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex) {
Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
// We may have hit the beginning of our SparseBitVector, in which case,
// we may need to insert right after this element, which requires moving
// the current iterator forward one, because insert does insert before.
if (ElementIter != Elements.end() &&
ElementIter->index() < ElementIndex)
ElementIter = Elements.insert(++ElementIter, Element);
else
ElementIter = Elements.insert(ElementIter, Element);
}
}
CurrElementIter = ElementIter;
ElementIter->set(Idx % ElementSize);
}
bool test_and_set (unsigned Idx) {
bool old = test(Idx);
if (!old) {
set(Idx);
return true;
}
return false;
}
bool operator!=(const SparseBitVector &RHS) const {
return !(*this == RHS);
}
bool operator==(const SparseBitVector &RHS) const {
ElementListConstIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end();
++Iter1, ++Iter2) {
if (*Iter1 != *Iter2)
return false;
}
return Iter1 == Elements.end() && Iter2 == RHS.Elements.end();
}
// Union our bitmap with the RHS and return true if we changed.
bool operator|=(const SparseBitVector &RHS) {
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// If RHS is empty, we are done
if (RHS.Elements.empty())
return false;
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) {
Elements.insert(Iter1,
new SparseBitVectorElement<ElementSize>(*Iter2));
++Iter2;
changed = true;
} else if (Iter1->index() == Iter2->index()) {
changed |= Iter1->unionWith(*Iter2);
++Iter1;
++Iter2;
} else {
++Iter1;
}
}
CurrElementIter = Elements.begin();
return changed;
}
// Intersect our bitmap with the RHS and return true if ours changed.
bool operator&=(const SparseBitVector &RHS) {
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// Check if both bitmaps are empty.
if (Elements.empty() && RHS.Elements.empty())
return false;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end())
return changed;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero;
changed |= Iter1->intersectWith(*Iter2, BecameZero);
if (BecameZero) {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
} else {
++Iter1;
}
++Iter2;
} else {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
}
}
Elements.erase(Iter1, Elements.end());
CurrElementIter = Elements.begin();
return changed;
}
// Intersect our bitmap with the complement of the RHS and return true if ours
// changed.
bool intersectWithComplement(const SparseBitVector &RHS) {
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// If either our bitmap or RHS is empty, we are done
if (Elements.empty() || RHS.Elements.empty())
return false;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end())
return changed;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero;
changed |= Iter1->intersectWithComplement(*Iter2, BecameZero);
if (BecameZero) {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
} else {
++Iter1;
}
++Iter2;
} else {
++Iter1;
}
}
CurrElementIter = Elements.begin();
return changed;
}
bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const {
return intersectWithComplement(*RHS);
}
// Three argument version of intersectWithComplement. Result of RHS1 & ~RHS2
// is stored into this bitmap.
void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1,
const SparseBitVector<ElementSize> &RHS2)
{
Elements.clear();
ElementListConstIter Iter1 = RHS1.Elements.begin();
ElementListConstIter Iter2 = RHS2.Elements.begin();
// If RHS1 is empty, we are done
// If RHS2 is empty, we still have to copy RHS1
if (RHS1.Elements.empty())
return;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS2.Elements.end()) {
if (Iter1 == RHS1.Elements.end())
return;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero = false;
SparseBitVectorElement<ElementSize> *NewElement =
new SparseBitVectorElement<ElementSize>(Iter1->index());
NewElement->intersectWithComplement(*Iter1, *Iter2, BecameZero);
if (!BecameZero) {
Elements.push_back(NewElement);
}
else
delete NewElement;
++Iter1;
++Iter2;
} else {
SparseBitVectorElement<ElementSize> *NewElement =
new SparseBitVectorElement<ElementSize>(*Iter1);
Elements.push_back(NewElement);
++Iter1;
}
}
// copy the remaining elements
while (Iter1 != RHS1.Elements.end()) {
SparseBitVectorElement<ElementSize> *NewElement =
new SparseBitVectorElement<ElementSize>(*Iter1);
Elements.push_back(NewElement);
++Iter1;
}
CurrElementIter = Elements.begin();
return;
}
void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1,
const SparseBitVector<ElementSize> *RHS2) {
intersectWithComplement(*RHS1, *RHS2);
}
bool intersects(const SparseBitVector<ElementSize> *RHS) const {
return intersects(*RHS);
}
// Return true if we share any bits in common with RHS
bool intersects(const SparseBitVector<ElementSize> &RHS) const {
ElementListConstIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// Check if both bitmaps are empty.
if (Elements.empty() && RHS.Elements.empty())
return false;
// Loop through, intersecting stopping when we hit bits in common.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end())
return false;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
if (Iter1->intersects(*Iter2))
return true;
++Iter1;
++Iter2;
} else {
++Iter1;
}
}
return false;
}
// Return the first set bit in the bitmap. Return -1 if no bits are set.
int find_first() const {
if (Elements.empty())
return -1;
const SparseBitVectorElement<ElementSize> &First = *(Elements.begin());
return (First.index() * ElementSize) + First.find_first();
}
// Return true if the SparseBitVector is empty
bool empty() const {
return Elements.empty();
}
unsigned count() const {
unsigned BitCount = 0;
for (ElementListConstIter Iter = Elements.begin();
Iter != Elements.end();
++Iter)
BitCount += Iter->count();
return BitCount;
}
iterator begin() const {
return iterator(this);
}
iterator end() const {
return iterator(this, true);
}
// Get a hash value for this bitmap.
uint64_t getHashValue() const {
uint64_t HashVal = 0;
for (ElementListConstIter Iter = Elements.begin();
Iter != Elements.end();
++Iter) {
HashVal ^= Iter->index();
HashVal ^= Iter->getHashValue();
}
return HashVal;
}
};
// Convenience functions to allow Or and And without dereferencing in the user
// code.
template <unsigned ElementSize>
inline bool operator |=(SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> *RHS) {
return LHS |= *RHS;
}
template <unsigned ElementSize>
inline bool operator |=(SparseBitVector<ElementSize> *LHS,
const SparseBitVector<ElementSize> &RHS) {
return LHS->operator|=(RHS);
}
template <unsigned ElementSize>
inline bool operator &=(SparseBitVector<ElementSize> *LHS,
const SparseBitVector<ElementSize> &RHS) {
return LHS->operator&=(RHS);
}
template <unsigned ElementSize>
inline bool operator &=(SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> *RHS) {
return LHS &= (*RHS);
}
// Dump a SparseBitVector to a stream
template <unsigned ElementSize>
void dump(const SparseBitVector<ElementSize> &LHS, llvm::OStream &out) {
out << "[ ";
typename SparseBitVector<ElementSize>::iterator bi;
for (bi = LHS.begin(); bi != LHS.end(); ++bi) {
out << *bi << " ";
}
out << " ]\n";
}
}
#endif