llvm-6502/lib/Target/NVPTX/NVPTXISelLowering.cpp

2316 lines
83 KiB
C++
Raw Normal View History

//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that NVPTX uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "NVPTXISelLowering.h"
#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXTargetObjectFile.h"
#include "NVPTXUtilities.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <sstream>
#undef DEBUG_TYPE
#define DEBUG_TYPE "nvptx-lower"
using namespace llvm;
static unsigned int uniqueCallSite = 0;
static cl::opt<bool> sched4reg(
"nvptx-sched4reg",
cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
static bool IsPTXVectorType(MVT VT) {
switch (VT.SimpleTy) {
default:
return false;
case MVT::v2i1:
case MVT::v4i1:
case MVT::v2i8:
case MVT::v4i8:
case MVT::v2i16:
case MVT::v4i16:
case MVT::v2i32:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v2f32:
case MVT::v4f32:
case MVT::v2f64:
return true;
}
}
/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
/// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
/// into their primitive components.
/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
/// LowerCall, and LowerReturn.
static void ComputePTXValueVTs(const TargetLowering &TLI, Type *Ty,
SmallVectorImpl<EVT> &ValueVTs,
SmallVectorImpl<uint64_t> *Offsets = 0,
uint64_t StartingOffset = 0) {
SmallVector<EVT, 16> TempVTs;
SmallVector<uint64_t, 16> TempOffsets;
ComputeValueVTs(TLI, Ty, TempVTs, &TempOffsets, StartingOffset);
for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
EVT VT = TempVTs[i];
uint64_t Off = TempOffsets[i];
if (VT.isVector())
for (unsigned j = 0, je = VT.getVectorNumElements(); j != je; ++j) {
ValueVTs.push_back(VT.getVectorElementType());
if (Offsets)
Offsets->push_back(Off+j*VT.getVectorElementType().getStoreSize());
}
else {
ValueVTs.push_back(VT);
if (Offsets)
Offsets->push_back(Off);
}
}
}
// NVPTXTargetLowering Constructor.
NVPTXTargetLowering::NVPTXTargetLowering(NVPTXTargetMachine &TM)
: TargetLowering(TM, new NVPTXTargetObjectFile()), nvTM(&TM),
nvptxSubtarget(TM.getSubtarget<NVPTXSubtarget>()) {
// always lower memset, memcpy, and memmove intrinsics to load/store
// instructions, rather
// then generating calls to memset, mempcy or memmove.
MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
setBooleanContents(ZeroOrNegativeOneBooleanContent);
// Jump is Expensive. Don't create extra control flow for 'and', 'or'
// condition branches.
setJumpIsExpensive(true);
// By default, use the Source scheduling
if (sched4reg)
setSchedulingPreference(Sched::RegPressure);
else
setSchedulingPreference(Sched::Source);
addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
// Operations not directly supported by NVPTX.
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
setOperationAction(ISD::BR_CC, MVT::i8, Expand);
setOperationAction(ISD::BR_CC, MVT::i16, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
// Some SIGN_EXTEND_INREG can be done using cvt instruction.
// For others we will expand to a SHL/SRA pair.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (nvptxSubtarget.hasROT64()) {
setOperationAction(ISD::ROTL, MVT::i64, Legal);
setOperationAction(ISD::ROTR, MVT::i64, Legal);
} else {
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::ROTR, MVT::i64, Expand);
}
if (nvptxSubtarget.hasROT32()) {
setOperationAction(ISD::ROTL, MVT::i32, Legal);
setOperationAction(ISD::ROTR, MVT::i32, Legal);
} else {
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTR, MVT::i32, Expand);
}
setOperationAction(ISD::ROTL, MVT::i16, Expand);
setOperationAction(ISD::ROTR, MVT::i16, Expand);
setOperationAction(ISD::ROTL, MVT::i8, Expand);
setOperationAction(ISD::ROTR, MVT::i8, Expand);
setOperationAction(ISD::BSWAP, MVT::i16, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
// Indirect branch is not supported.
// This also disables Jump Table creation.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
// We want to legalize constant related memmove and memcopy
// intrinsics.
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
// Turn FP extload into load/fextend
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// PTX does not support load / store predicate registers
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setTruncStoreAction(MVT::i64, MVT::i1, Expand);
setTruncStoreAction(MVT::i32, MVT::i1, Expand);
setTruncStoreAction(MVT::i16, MVT::i1, Expand);
setTruncStoreAction(MVT::i8, MVT::i1, Expand);
// This is legal in NVPTX
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
// TRAP can be lowered to PTX trap
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::ADDC, MVT::i64, Expand);
setOperationAction(ISD::ADDE, MVT::i64, Expand);
// Register custom handling for vector loads/stores
for (int i = MVT::FIRST_VECTOR_VALUETYPE; i <= MVT::LAST_VECTOR_VALUETYPE;
++i) {
MVT VT = (MVT::SimpleValueType) i;
if (IsPTXVectorType(VT)) {
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
}
}
// Custom handling for i8 intrinsics
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
setOperationAction(ISD::CTLZ, MVT::i16, Legal);
setOperationAction(ISD::CTLZ, MVT::i32, Legal);
setOperationAction(ISD::CTLZ, MVT::i64, Legal);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Legal);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Legal);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Legal);
setOperationAction(ISD::CTTZ, MVT::i16, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::CTPOP, MVT::i16, Legal);
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
setOperationAction(ISD::CTPOP, MVT::i64, Legal);
// Now deduce the information based on the above mentioned
// actions
computeRegisterProperties();
}
const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default:
return 0;
case NVPTXISD::CALL:
return "NVPTXISD::CALL";
case NVPTXISD::RET_FLAG:
return "NVPTXISD::RET_FLAG";
case NVPTXISD::Wrapper:
return "NVPTXISD::Wrapper";
case NVPTXISD::DeclareParam:
return "NVPTXISD::DeclareParam";
case NVPTXISD::DeclareScalarParam:
return "NVPTXISD::DeclareScalarParam";
case NVPTXISD::DeclareRet:
return "NVPTXISD::DeclareRet";
case NVPTXISD::DeclareRetParam:
return "NVPTXISD::DeclareRetParam";
case NVPTXISD::PrintCall:
return "NVPTXISD::PrintCall";
case NVPTXISD::LoadParam:
return "NVPTXISD::LoadParam";
case NVPTXISD::LoadParamV2:
return "NVPTXISD::LoadParamV2";
case NVPTXISD::LoadParamV4:
return "NVPTXISD::LoadParamV4";
case NVPTXISD::StoreParam:
return "NVPTXISD::StoreParam";
case NVPTXISD::StoreParamV2:
return "NVPTXISD::StoreParamV2";
case NVPTXISD::StoreParamV4:
return "NVPTXISD::StoreParamV4";
case NVPTXISD::StoreParamS32:
return "NVPTXISD::StoreParamS32";
case NVPTXISD::StoreParamU32:
return "NVPTXISD::StoreParamU32";
case NVPTXISD::CallArgBegin:
return "NVPTXISD::CallArgBegin";
case NVPTXISD::CallArg:
return "NVPTXISD::CallArg";
case NVPTXISD::LastCallArg:
return "NVPTXISD::LastCallArg";
case NVPTXISD::CallArgEnd:
return "NVPTXISD::CallArgEnd";
case NVPTXISD::CallVoid:
return "NVPTXISD::CallVoid";
case NVPTXISD::CallVal:
return "NVPTXISD::CallVal";
case NVPTXISD::CallSymbol:
return "NVPTXISD::CallSymbol";
case NVPTXISD::Prototype:
return "NVPTXISD::Prototype";
case NVPTXISD::MoveParam:
return "NVPTXISD::MoveParam";
case NVPTXISD::StoreRetval:
return "NVPTXISD::StoreRetval";
case NVPTXISD::StoreRetvalV2:
return "NVPTXISD::StoreRetvalV2";
case NVPTXISD::StoreRetvalV4:
return "NVPTXISD::StoreRetvalV4";
case NVPTXISD::PseudoUseParam:
return "NVPTXISD::PseudoUseParam";
case NVPTXISD::RETURN:
return "NVPTXISD::RETURN";
case NVPTXISD::CallSeqBegin:
return "NVPTXISD::CallSeqBegin";
case NVPTXISD::CallSeqEnd:
return "NVPTXISD::CallSeqEnd";
case NVPTXISD::CallPrototype:
return "NVPTXISD::CallPrototype";
case NVPTXISD::LoadV2:
return "NVPTXISD::LoadV2";
case NVPTXISD::LoadV4:
return "NVPTXISD::LoadV4";
case NVPTXISD::LDGV2:
return "NVPTXISD::LDGV2";
case NVPTXISD::LDGV4:
return "NVPTXISD::LDGV4";
case NVPTXISD::LDUV2:
return "NVPTXISD::LDUV2";
case NVPTXISD::LDUV4:
return "NVPTXISD::LDUV4";
case NVPTXISD::StoreV2:
return "NVPTXISD::StoreV2";
case NVPTXISD::StoreV4:
return "NVPTXISD::StoreV4";
}
}
bool NVPTXTargetLowering::shouldSplitVectorElementType(EVT VT) const {
return VT == MVT::i1;
}
SDValue
NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
Op = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
return DAG.getNode(NVPTXISD::Wrapper, dl, getPointerTy(), Op);
}
std::string
NVPTXTargetLowering::getPrototype(Type *retTy, const ArgListTy &Args,
const SmallVectorImpl<ISD::OutputArg> &Outs,
unsigned retAlignment,
const ImmutableCallSite *CS) const {
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
assert(isABI && "Non-ABI compilation is not supported");
if (!isABI)
return "";
std::stringstream O;
O << "prototype_" << uniqueCallSite << " : .callprototype ";
if (retTy->getTypeID() == Type::VoidTyID) {
O << "()";
} else {
O << "(";
if (retTy->isFloatingPointTy() || retTy->isIntegerTy()) {
unsigned size = 0;
if (const IntegerType *ITy = dyn_cast<IntegerType>(retTy)) {
size = ITy->getBitWidth();
if (size < 32)
size = 32;
} else {
assert(retTy->isFloatingPointTy() &&
"Floating point type expected here");
size = retTy->getPrimitiveSizeInBits();
}
O << ".param .b" << size << " _";
} else if (isa<PointerType>(retTy)) {
O << ".param .b" << getPointerTy().getSizeInBits() << " _";
} else {
if ((retTy->getTypeID() == Type::StructTyID) || isa<VectorType>(retTy)) {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*this, retTy, vtparts);
unsigned totalsz = 0;
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
// TODO: no need to loop
for (unsigned j = 0, je = elems; j != je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 8))
sz = 8;
totalsz += sz / 8;
}
}
O << ".param .align " << retAlignment << " .b8 _[" << totalsz << "]";
} else {
assert(false && "Unknown return type");
}
}
O << ") ";
}
O << "_ (";
bool first = true;
MVT thePointerTy = getPointerTy();
unsigned OIdx = 0;
for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
Type *Ty = Args[i].Ty;
if (!first) {
O << ", ";
}
first = false;
if (Outs[OIdx].Flags.isByVal() == false) {
if (Ty->isAggregateType() || Ty->isVectorTy()) {
unsigned align = 0;
const CallInst *CallI = cast<CallInst>(CS->getInstruction());
const DataLayout *TD = getDataLayout();
// +1 because index 0 is reserved for return type alignment
if (!llvm::getAlign(*CallI, i + 1, align))
align = TD->getABITypeAlignment(Ty);
unsigned sz = TD->getTypeAllocSize(Ty);
O << ".param .align " << align << " .b8 ";
O << "_";
O << "[" << sz << "]";
// update the index for Outs
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*this, Ty, vtparts);
if (unsigned len = vtparts.size())
OIdx += len - 1;
continue;
}
// i8 types in IR will be i16 types in SDAG
assert((getValueType(Ty) == Outs[OIdx].VT ||
(getValueType(Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
"type mismatch between callee prototype and arguments");
// scalar type
unsigned sz = 0;
if (isa<IntegerType>(Ty)) {
sz = cast<IntegerType>(Ty)->getBitWidth();
if (sz < 32)
sz = 32;
} else if (isa<PointerType>(Ty))
sz = thePointerTy.getSizeInBits();
else
sz = Ty->getPrimitiveSizeInBits();
O << ".param .b" << sz << " ";
O << "_";
continue;
}
const PointerType *PTy = dyn_cast<PointerType>(Ty);
assert(PTy && "Param with byval attribute should be a pointer type");
Type *ETy = PTy->getElementType();
unsigned align = Outs[OIdx].Flags.getByValAlign();
unsigned sz = getDataLayout()->getTypeAllocSize(ETy);
O << ".param .align " << align << " .b8 ";
O << "_";
O << "[" << sz << "]";
}
O << ");";
return O.str();
}
unsigned
NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
const ImmutableCallSite *CS,
Type *Ty,
unsigned Idx) const {
const DataLayout *TD = getDataLayout();
unsigned Align = 0;
const Value *DirectCallee = CS->getCalledFunction();
if (!DirectCallee) {
// We don't have a direct function symbol, but that may be because of
// constant cast instructions in the call.
const Instruction *CalleeI = CS->getInstruction();
assert(CalleeI && "Call target is not a function or derived value?");
// With bitcast'd call targets, the instruction will be the call
if (isa<CallInst>(CalleeI)) {
// Check if we have call alignment metadata
if (llvm::getAlign(*cast<CallInst>(CalleeI), Idx, Align))
return Align;
const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
// Ignore any bitcast instructions
while(isa<ConstantExpr>(CalleeV)) {
const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
if (!CE->isCast())
break;
// Look through the bitcast
CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
}
// We have now looked past all of the bitcasts. Do we finally have a
// Function?
if (isa<Function>(CalleeV))
DirectCallee = CalleeV;
}
}
// Check for function alignment information if we found that the
// ultimate target is a Function
if (DirectCallee)
if (llvm::getAlign(*cast<Function>(DirectCallee), Idx, Align))
return Align;
// Call is indirect or alignment information is not available, fall back to
// the ABI type alignment
return TD->getABITypeAlignment(Ty);
}
SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
ArgListTy &Args = CLI.Args;
Type *retTy = CLI.RetTy;
ImmutableCallSite *CS = CLI.CS;
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
assert(isABI && "Non-ABI compilation is not supported");
if (!isABI)
return Chain;
const DataLayout *TD = getDataLayout();
MachineFunction &MF = DAG.getMachineFunction();
const Function *F = MF.getFunction();
SDValue tempChain = Chain;
Chain =
DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(uniqueCallSite, true),
dl);
SDValue InFlag = Chain.getValue(1);
unsigned paramCount = 0;
// Args.size() and Outs.size() need not match.
// Outs.size() will be larger
// * if there is an aggregate argument with multiple fields (each field
// showing up separately in Outs)
// * if there is a vector argument with more than typical vector-length
// elements (generally if more than 4) where each vector element is
// individually present in Outs.
// So a different index should be used for indexing into Outs/OutVals.
// See similar issue in LowerFormalArguments.
unsigned OIdx = 0;
// Declare the .params or .reg need to pass values
// to the function
for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
EVT VT = Outs[OIdx].VT;
Type *Ty = Args[i].Ty;
if (Outs[OIdx].Flags.isByVal() == false) {
if (Ty->isAggregateType()) {
// aggregate
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*this, Ty, vtparts);
unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
// declare .param .align <align> .b8 .param<n>[<size>];
unsigned sz = TD->getTypeAllocSize(Ty);
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, MVT::i32),
DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(sz, MVT::i32), InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
DeclareParamOps, 5);
InFlag = Chain.getValue(1);
unsigned curOffset = 0;
for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
unsigned elems = 1;
EVT elemtype = vtparts[j];
if (vtparts[j].isVector()) {
elems = vtparts[j].getVectorNumElements();
elemtype = vtparts[j].getVectorElementType();
}
for (unsigned k = 0, ke = elems; k != ke; ++k) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 8))
sz = 8;
SDValue StVal = OutVals[OIdx];
if (elemtype.getSizeInBits() < 16) {
StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
}
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CopyParamOps[] = { Chain,
DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(curOffset, MVT::i32),
StVal, InFlag };
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
CopyParamVTs, &CopyParamOps[0], 5,
elemtype, MachinePointerInfo());
InFlag = Chain.getValue(1);
curOffset += sz / 8;
++OIdx;
}
}
if (vtparts.size() > 0)
--OIdx;
++paramCount;
continue;
}
if (Ty->isVectorTy()) {
EVT ObjectVT = getValueType(Ty);
unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
// declare .param .align <align> .b8 .param<n>[<size>];
unsigned sz = TD->getTypeAllocSize(Ty);
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, MVT::i32),
DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(sz, MVT::i32), InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
DeclareParamOps, 5);
InFlag = Chain.getValue(1);
unsigned NumElts = ObjectVT.getVectorNumElements();
EVT EltVT = ObjectVT.getVectorElementType();
EVT MemVT = EltVT;
bool NeedExtend = false;
if (EltVT.getSizeInBits() < 16) {
NeedExtend = true;
EltVT = MVT::i16;
}
// V1 store
if (NumElts == 1) {
SDValue Elt = OutVals[OIdx++];
if (NeedExtend)
Elt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt);
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CopyParamOps[] = { Chain,
DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(0, MVT::i32), Elt,
InFlag };
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
CopyParamVTs, &CopyParamOps[0], 5,
MemVT, MachinePointerInfo());
InFlag = Chain.getValue(1);
} else if (NumElts == 2) {
SDValue Elt0 = OutVals[OIdx++];
SDValue Elt1 = OutVals[OIdx++];
if (NeedExtend) {
Elt0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt0);
Elt1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt1);
}
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CopyParamOps[] = { Chain,
DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(0, MVT::i32), Elt0, Elt1,
InFlag };
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParamV2, dl,
CopyParamVTs, &CopyParamOps[0], 6,
MemVT, MachinePointerInfo());
InFlag = Chain.getValue(1);
} else {
unsigned curOffset = 0;
// V4 stores
// We have at least 4 elements (<3 x Ty> expands to 4 elements) and
// the
// vector will be expanded to a power of 2 elements, so we know we can
// always round up to the next multiple of 4 when creating the vector
// stores.
// e.g. 4 elem => 1 st.v4
// 6 elem => 2 st.v4
// 8 elem => 2 st.v4
// 11 elem => 3 st.v4
unsigned VecSize = 4;
if (EltVT.getSizeInBits() == 64)
VecSize = 2;
// This is potentially only part of a vector, so assume all elements
// are packed together.
unsigned PerStoreOffset = MemVT.getStoreSizeInBits() / 8 * VecSize;
for (unsigned i = 0; i < NumElts; i += VecSize) {
// Get values
SDValue StoreVal;
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(DAG.getConstant(paramCount, MVT::i32));
Ops.push_back(DAG.getConstant(curOffset, MVT::i32));
unsigned Opc = NVPTXISD::StoreParamV2;
StoreVal = OutVals[OIdx++];
if (NeedExtend)
StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
Ops.push_back(StoreVal);
if (i + 1 < NumElts) {
StoreVal = OutVals[OIdx++];
if (NeedExtend)
StoreVal =
DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
} else {
StoreVal = DAG.getUNDEF(EltVT);
}
Ops.push_back(StoreVal);
if (VecSize == 4) {
Opc = NVPTXISD::StoreParamV4;
if (i + 2 < NumElts) {
StoreVal = OutVals[OIdx++];
if (NeedExtend)
StoreVal =
DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
} else {
StoreVal = DAG.getUNDEF(EltVT);
}
Ops.push_back(StoreVal);
if (i + 3 < NumElts) {
StoreVal = OutVals[OIdx++];
if (NeedExtend)
StoreVal =
DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
} else {
StoreVal = DAG.getUNDEF(EltVT);
}
Ops.push_back(StoreVal);
}
Ops.push_back(InFlag);
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getMemIntrinsicNode(Opc, dl, CopyParamVTs, &Ops[0],
Ops.size(), MemVT,
MachinePointerInfo());
InFlag = Chain.getValue(1);
curOffset += PerStoreOffset;
}
}
++paramCount;
--OIdx;
continue;
}
// Plain scalar
// for ABI, declare .param .b<size> .param<n>;
unsigned sz = VT.getSizeInBits();
bool needExtend = false;
if (VT.isInteger()) {
if (sz < 16)
needExtend = true;
if (sz < 32)
sz = 32;
}
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareParamOps[] = { Chain,
DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(sz, MVT::i32),
DAG.getConstant(0, MVT::i32), InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
DeclareParamOps, 5);
InFlag = Chain.getValue(1);
SDValue OutV = OutVals[OIdx];
if (needExtend) {
// zext/sext i1 to i16
unsigned opc = ISD::ZERO_EXTEND;
if (Outs[OIdx].Flags.isSExt())
opc = ISD::SIGN_EXTEND;
OutV = DAG.getNode(opc, dl, MVT::i16, OutV);
}
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(0, MVT::i32), OutV, InFlag };
unsigned opcode = NVPTXISD::StoreParam;
if (Outs[OIdx].Flags.isZExt())
opcode = NVPTXISD::StoreParamU32;
else if (Outs[OIdx].Flags.isSExt())
opcode = NVPTXISD::StoreParamS32;
Chain = DAG.getMemIntrinsicNode(opcode, dl, CopyParamVTs, CopyParamOps, 5,
VT, MachinePointerInfo());
InFlag = Chain.getValue(1);
++paramCount;
continue;
}
// struct or vector
SmallVector<EVT, 16> vtparts;
const PointerType *PTy = dyn_cast<PointerType>(Args[i].Ty);
assert(PTy && "Type of a byval parameter should be pointer");
ComputeValueVTs(*this, PTy->getElementType(), vtparts);
// declare .param .align <align> .b8 .param<n>[<size>];
unsigned sz = Outs[OIdx].Flags.getByValSize();
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
// The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
// so we don't need to worry about natural alignment or not.
// See TargetLowering::LowerCallTo().
SDValue DeclareParamOps[] = {
Chain, DAG.getConstant(Outs[OIdx].Flags.getByValAlign(), MVT::i32),
DAG.getConstant(paramCount, MVT::i32), DAG.getConstant(sz, MVT::i32),
InFlag
};
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
DeclareParamOps, 5);
InFlag = Chain.getValue(1);
unsigned curOffset = 0;
for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
unsigned elems = 1;
EVT elemtype = vtparts[j];
if (vtparts[j].isVector()) {
elems = vtparts[j].getVectorNumElements();
elemtype = vtparts[j].getVectorElementType();
}
for (unsigned k = 0, ke = elems; k != ke; ++k) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 8))
sz = 8;
SDValue srcAddr =
DAG.getNode(ISD::ADD, dl, getPointerTy(), OutVals[OIdx],
DAG.getConstant(curOffset, getPointerTy()));
SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
MachinePointerInfo(), false, false, false,
0);
if (elemtype.getSizeInBits() < 16) {
theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
}
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32),
DAG.getConstant(curOffset, MVT::i32), theVal,
InFlag };
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
CopyParamOps, 5, elemtype,
MachinePointerInfo());
InFlag = Chain.getValue(1);
curOffset += sz / 8;
}
}
++paramCount;
}
GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
unsigned retAlignment = 0;
// Handle Result
if (Ins.size() > 0) {
SmallVector<EVT, 16> resvtparts;
ComputeValueVTs(*this, retTy, resvtparts);
// Declare
// .param .align 16 .b8 retval0[<size-in-bytes>], or
// .param .b<size-in-bits> retval0
unsigned resultsz = TD->getTypeAllocSizeInBits(retTy);
if (retTy->isSingleValueType()) {
// Scalar needs to be at least 32bit wide
if (resultsz < 32)
resultsz = 32;
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, MVT::i32),
DAG.getConstant(resultsz, MVT::i32),
DAG.getConstant(0, MVT::i32), InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
DeclareRetOps, 5);
InFlag = Chain.getValue(1);
} else {
retAlignment = getArgumentAlignment(Callee, CS, retTy, 0);
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue DeclareRetOps[] = { Chain,
DAG.getConstant(retAlignment, MVT::i32),
DAG.getConstant(resultsz / 8, MVT::i32),
DAG.getConstant(0, MVT::i32), InFlag };
Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
DeclareRetOps, 5);
InFlag = Chain.getValue(1);
}
}
if (!Func) {
// This is indirect function call case : PTX requires a prototype of the
// form
// proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
// to be emitted, and the label has to used as the last arg of call
// instruction.
// The prototype is embedded in a string and put as the operand for a
// CallPrototype SDNode which will print out to the value of the string.
SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
std::string Proto = getPrototype(retTy, Args, Outs, retAlignment, CS);
const char *ProtoStr =
nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
SDValue ProtoOps[] = {
Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
};
Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, &ProtoOps[0], 3);
InFlag = Chain.getValue(1);
}
// Op to just print "call"
SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue PrintCallOps[] = {
Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, MVT::i32), InFlag
};
Chain = DAG.getNode(Func ? (NVPTXISD::PrintCallUni) : (NVPTXISD::PrintCall),
dl, PrintCallVTs, PrintCallOps, 3);
InFlag = Chain.getValue(1);
// Ops to print out the function name
SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallVoidOps[] = { Chain, Callee, InFlag };
Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps, 3);
InFlag = Chain.getValue(1);
// Ops to print out the param list
SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgBeginOps[] = { Chain, InFlag };
Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
CallArgBeginOps, 2);
InFlag = Chain.getValue(1);
for (unsigned i = 0, e = paramCount; i != e; ++i) {
unsigned opcode;
if (i == (e - 1))
opcode = NVPTXISD::LastCallArg;
else
opcode = NVPTXISD::CallArg;
SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgOps[] = { Chain, DAG.getConstant(1, MVT::i32),
DAG.getConstant(i, MVT::i32), InFlag };
Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps, 4);
InFlag = Chain.getValue(1);
}
SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue CallArgEndOps[] = { Chain, DAG.getConstant(Func ? 1 : 0, MVT::i32),
InFlag };
Chain =
DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps, 3);
InFlag = Chain.getValue(1);
if (!Func) {
SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue PrototypeOps[] = { Chain, DAG.getConstant(uniqueCallSite, MVT::i32),
InFlag };
Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps, 3);
InFlag = Chain.getValue(1);
}
// Generate loads from param memory/moves from registers for result
if (Ins.size() > 0) {
unsigned resoffset = 0;
if (retTy && retTy->isVectorTy()) {
EVT ObjectVT = getValueType(retTy);
unsigned NumElts = ObjectVT.getVectorNumElements();
EVT EltVT = ObjectVT.getVectorElementType();
assert(nvTM->getTargetLowering()->getNumRegisters(F->getContext(),
ObjectVT) == NumElts &&
"Vector was not scalarized");
unsigned sz = EltVT.getSizeInBits();
bool needTruncate = sz < 16 ? true : false;
if (NumElts == 1) {
// Just a simple load
std::vector<EVT> LoadRetVTs;
if (needTruncate) {
// If loading i1 result, generate
// load i16
// trunc i16 to i1
LoadRetVTs.push_back(MVT::i16);
} else
LoadRetVTs.push_back(EltVT);
LoadRetVTs.push_back(MVT::Other);
LoadRetVTs.push_back(MVT::Glue);
std::vector<SDValue> LoadRetOps;
LoadRetOps.push_back(Chain);
LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
LoadRetOps.push_back(DAG.getConstant(0, MVT::i32));
LoadRetOps.push_back(InFlag);
SDValue retval = DAG.getMemIntrinsicNode(
NVPTXISD::LoadParam, dl,
DAG.getVTList(&LoadRetVTs[0], LoadRetVTs.size()), &LoadRetOps[0],
LoadRetOps.size(), EltVT, MachinePointerInfo());
Chain = retval.getValue(1);
InFlag = retval.getValue(2);
SDValue Ret0 = retval;
if (needTruncate)
Ret0 = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Ret0);
InVals.push_back(Ret0);
} else if (NumElts == 2) {
// LoadV2
std::vector<EVT> LoadRetVTs;
if (needTruncate) {
// If loading i1 result, generate
// load i16
// trunc i16 to i1
LoadRetVTs.push_back(MVT::i16);
LoadRetVTs.push_back(MVT::i16);
} else {
LoadRetVTs.push_back(EltVT);
LoadRetVTs.push_back(EltVT);
}
LoadRetVTs.push_back(MVT::Other);
LoadRetVTs.push_back(MVT::Glue);
std::vector<SDValue> LoadRetOps;
LoadRetOps.push_back(Chain);
LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
LoadRetOps.push_back(DAG.getConstant(0, MVT::i32));
LoadRetOps.push_back(InFlag);
SDValue retval = DAG.getMemIntrinsicNode(
NVPTXISD::LoadParamV2, dl,
DAG.getVTList(&LoadRetVTs[0], LoadRetVTs.size()), &LoadRetOps[0],
LoadRetOps.size(), EltVT, MachinePointerInfo());
Chain = retval.getValue(2);
InFlag = retval.getValue(3);
SDValue Ret0 = retval.getValue(0);
SDValue Ret1 = retval.getValue(1);
if (needTruncate) {
Ret0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret0);
InVals.push_back(Ret0);
Ret1 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret1);
InVals.push_back(Ret1);
} else {
InVals.push_back(Ret0);
InVals.push_back(Ret1);
}
} else {
// Split into N LoadV4
unsigned Ofst = 0;
unsigned VecSize = 4;
unsigned Opc = NVPTXISD::LoadParamV4;
if (EltVT.getSizeInBits() == 64) {
VecSize = 2;
Opc = NVPTXISD::LoadParamV2;
}
EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
for (unsigned i = 0; i < NumElts; i += VecSize) {
SmallVector<EVT, 8> LoadRetVTs;
if (needTruncate) {
// If loading i1 result, generate
// load i16
// trunc i16 to i1
for (unsigned j = 0; j < VecSize; ++j)
LoadRetVTs.push_back(MVT::i16);
} else {
for (unsigned j = 0; j < VecSize; ++j)
LoadRetVTs.push_back(EltVT);
}
LoadRetVTs.push_back(MVT::Other);
LoadRetVTs.push_back(MVT::Glue);
SmallVector<SDValue, 4> LoadRetOps;
LoadRetOps.push_back(Chain);
LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
LoadRetOps.push_back(DAG.getConstant(Ofst, MVT::i32));
LoadRetOps.push_back(InFlag);
SDValue retval = DAG.getMemIntrinsicNode(
Opc, dl, DAG.getVTList(&LoadRetVTs[0], LoadRetVTs.size()),
&LoadRetOps[0], LoadRetOps.size(), EltVT, MachinePointerInfo());
if (VecSize == 2) {
Chain = retval.getValue(2);
InFlag = retval.getValue(3);
} else {
Chain = retval.getValue(4);
InFlag = retval.getValue(5);
}
for (unsigned j = 0; j < VecSize; ++j) {
if (i + j >= NumElts)
break;
SDValue Elt = retval.getValue(j);
if (needTruncate)
Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
InVals.push_back(Elt);
}
Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
}
}
} else {
SmallVector<EVT, 16> VTs;
ComputePTXValueVTs(*this, retTy, VTs);
assert(VTs.size() == Ins.size() && "Bad value decomposition");
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
unsigned sz = VTs[i].getSizeInBits();
bool needTruncate = sz < 8 ? true : false;
if (VTs[i].isInteger() && (sz < 8))
sz = 8;
SmallVector<EVT, 4> LoadRetVTs;
EVT TheLoadType = VTs[i];
if (retTy->isIntegerTy() &&
TD->getTypeAllocSizeInBits(retTy) < 32) {
// This is for integer types only, and specifically not for
// aggregates.
LoadRetVTs.push_back(MVT::i32);
TheLoadType = MVT::i32;
} else if (sz < 16) {
// If loading i1/i8 result, generate
// load i8 (-> i16)
// trunc i16 to i1/i8
LoadRetVTs.push_back(MVT::i16);
} else
LoadRetVTs.push_back(Ins[i].VT);
LoadRetVTs.push_back(MVT::Other);
LoadRetVTs.push_back(MVT::Glue);
SmallVector<SDValue, 4> LoadRetOps;
LoadRetOps.push_back(Chain);
LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
LoadRetOps.push_back(DAG.getConstant(resoffset, MVT::i32));
LoadRetOps.push_back(InFlag);
SDValue retval = DAG.getMemIntrinsicNode(
NVPTXISD::LoadParam, dl,
DAG.getVTList(&LoadRetVTs[0], LoadRetVTs.size()), &LoadRetOps[0],
LoadRetOps.size(), TheLoadType, MachinePointerInfo());
Chain = retval.getValue(1);
InFlag = retval.getValue(2);
SDValue Ret0 = retval.getValue(0);
if (needTruncate)
Ret0 = DAG.getNode(ISD::TRUNCATE, dl, Ins[i].VT, Ret0);
InVals.push_back(Ret0);
resoffset += sz / 8;
}
}
}
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(uniqueCallSite, true),
DAG.getIntPtrConstant(uniqueCallSite + 1, true),
InFlag, dl);
uniqueCallSite++;
// set isTailCall to false for now, until we figure out how to express
// tail call optimization in PTX
isTailCall = false;
return Chain;
}
// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
// (see LegalizeDAG.cpp). This is slow and uses local memory.
// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
SDValue
NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
SDLoc dl(Node);
SmallVector<SDValue, 8> Ops;
unsigned NumOperands = Node->getNumOperands();
for (unsigned i = 0; i < NumOperands; ++i) {
SDValue SubOp = Node->getOperand(i);
EVT VVT = SubOp.getNode()->getValueType(0);
EVT EltVT = VVT.getVectorElementType();
unsigned NumSubElem = VVT.getVectorNumElements();
for (unsigned j = 0; j < NumSubElem; ++j) {
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
DAG.getIntPtrConstant(j)));
}
}
return DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), &Ops[0],
Ops.size());
}
SDValue
NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::RETURNADDR:
return SDValue();
case ISD::FRAMEADDR:
return SDValue();
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::INTRINSIC_W_CHAIN:
return Op;
case ISD::BUILD_VECTOR:
case ISD::EXTRACT_SUBVECTOR:
return Op;
case ISD::CONCAT_VECTORS:
return LowerCONCAT_VECTORS(Op, DAG);
case ISD::STORE:
return LowerSTORE(Op, DAG);
case ISD::LOAD:
return LowerLOAD(Op, DAG);
default:
llvm_unreachable("Custom lowering not defined for operation");
}
}
SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() == MVT::i1)
return LowerLOADi1(Op, DAG);
else
return SDValue();
}
// v = ld i1* addr
// =>
// v1 = ld i8* addr (-> i16)
// v = trunc i16 to i1
SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
LoadSDNode *LD = cast<LoadSDNode>(Node);
SDLoc dl(Node);
assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
assert(Node->getValueType(0) == MVT::i1 &&
"Custom lowering for i1 load only");
SDValue newLD =
DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(), LD->getAlignment());
SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
// The legalizer (the caller) is expecting two values from the legalized
// load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
// in LegalizeDAG.cpp which also uses MergeValues.
SDValue Ops[] = { result, LD->getChain() };
return DAG.getMergeValues(Ops, 2, dl);
}
SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
EVT ValVT = Op.getOperand(1).getValueType();
if (ValVT == MVT::i1)
return LowerSTOREi1(Op, DAG);
else if (ValVT.isVector())
return LowerSTOREVector(Op, DAG);
else
return SDValue();
}
SDValue
NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
SDNode *N = Op.getNode();
SDValue Val = N->getOperand(1);
SDLoc DL(N);
EVT ValVT = Val.getValueType();
if (ValVT.isVector()) {
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
// legal. We can (and should) split that into 2 stores of <2 x double> here
// but I'm leaving that as a TODO for now.
if (!ValVT.isSimple())
return SDValue();
switch (ValVT.getSimpleVT().SimpleTy) {
default:
return SDValue();
case MVT::v2i8:
case MVT::v2i16:
case MVT::v2i32:
case MVT::v2i64:
case MVT::v2f32:
case MVT::v2f64:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v4i32:
case MVT::v4f32:
// This is a "native" vector type
break;
}
unsigned Opcode = 0;
EVT EltVT = ValVT.getVectorElementType();
unsigned NumElts = ValVT.getVectorNumElements();
// Since StoreV2 is a target node, we cannot rely on DAG type legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// stored type to i16 and propogate the "real" type as the memory type.
bool NeedExt = false;
if (EltVT.getSizeInBits() < 16)
NeedExt = true;
switch (NumElts) {
default:
return SDValue();
case 2:
Opcode = NVPTXISD::StoreV2;
break;
case 4: {
Opcode = NVPTXISD::StoreV4;
break;
}
}
SmallVector<SDValue, 8> Ops;
// First is the chain
Ops.push_back(N->getOperand(0));
// Then the split values
for (unsigned i = 0; i < NumElts; ++i) {
SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
DAG.getIntPtrConstant(i));
if (NeedExt)
ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
Ops.push_back(ExtVal);
}
// Then any remaining arguments
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
Ops.push_back(N->getOperand(i));
}
MemSDNode *MemSD = cast<MemSDNode>(N);
SDValue NewSt = DAG.getMemIntrinsicNode(
Opcode, DL, DAG.getVTList(MVT::Other), &Ops[0], Ops.size(),
MemSD->getMemoryVT(), MemSD->getMemOperand());
//return DCI.CombineTo(N, NewSt, true);
return NewSt;
}
return SDValue();
}
// st i1 v, addr
// =>
// v1 = zxt v to i16
// st.u8 i16, addr
SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
SDLoc dl(Node);
StoreSDNode *ST = cast<StoreSDNode>(Node);
SDValue Tmp1 = ST->getChain();
SDValue Tmp2 = ST->getBasePtr();
SDValue Tmp3 = ST->getValue();
assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
SDValue Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
ST->getPointerInfo(), MVT::i8, isNonTemporal,
isVolatile, Alignment);
return Result;
}
SDValue NVPTXTargetLowering::getExtSymb(SelectionDAG &DAG, const char *inname,
int idx, EVT v) const {
std::string *name = nvTM->getManagedStrPool()->getManagedString(inname);
std::stringstream suffix;
suffix << idx;
*name += suffix.str();
return DAG.getTargetExternalSymbol(name->c_str(), v);
}
SDValue
NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
std::string ParamSym;
raw_string_ostream ParamStr(ParamSym);
ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
ParamStr.flush();
std::string *SavedStr =
nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
}
SDValue NVPTXTargetLowering::getParamHelpSymbol(SelectionDAG &DAG, int idx) {
return getExtSymb(DAG, ".HLPPARAM", idx);
}
// Check to see if the kernel argument is image*_t or sampler_t
bool llvm::isImageOrSamplerVal(const Value *arg, const Module *context) {
static const char *const specialTypes[] = { "struct._image2d_t",
"struct._image3d_t",
"struct._sampler_t" };
const Type *Ty = arg->getType();
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy)
return false;
if (!context)
return false;
const StructType *STy = dyn_cast<StructType>(PTy->getElementType());
const std::string TypeName = STy && !STy->isLiteral() ? STy->getName() : "";
for (int i = 0, e = array_lengthof(specialTypes); i != e; ++i)
if (TypeName == specialTypes[i])
return true;
return false;
}
SDValue NVPTXTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
const DataLayout *TD = getDataLayout();
const Function *F = MF.getFunction();
const AttributeSet &PAL = F->getAttributes();
const TargetLowering *TLI = nvTM->getTargetLowering();
SDValue Root = DAG.getRoot();
std::vector<SDValue> OutChains;
bool isKernel = llvm::isKernelFunction(*F);
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
assert(isABI && "Non-ABI compilation is not supported");
if (!isABI)
return Chain;
std::vector<Type *> argTypes;
std::vector<const Argument *> theArgs;
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I) {
theArgs.push_back(I);
argTypes.push_back(I->getType());
}
// argTypes.size() (or theArgs.size()) and Ins.size() need not match.
// Ins.size() will be larger
// * if there is an aggregate argument with multiple fields (each field
// showing up separately in Ins)
// * if there is a vector argument with more than typical vector-length
// elements (generally if more than 4) where each vector element is
// individually present in Ins.
// So a different index should be used for indexing into Ins.
// See similar issue in LowerCall.
unsigned InsIdx = 0;
int idx = 0;
for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
Type *Ty = argTypes[i];
// If the kernel argument is image*_t or sampler_t, convert it to
// a i32 constant holding the parameter position. This can later
// matched in the AsmPrinter to output the correct mangled name.
if (isImageOrSamplerVal(
theArgs[i],
(theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
: 0))) {
assert(isKernel && "Only kernels can have image/sampler params");
InVals.push_back(DAG.getConstant(i + 1, MVT::i32));
continue;
}
if (theArgs[i]->use_empty()) {
// argument is dead
if (Ty->isAggregateType()) {
SmallVector<EVT, 16> vtparts;
ComputePTXValueVTs(*this, Ty, vtparts);
assert(vtparts.size() > 0 && "empty aggregate type not expected");
for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
++parti) {
EVT partVT = vtparts[parti];
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, partVT));
++InsIdx;
}
if (vtparts.size() > 0)
--InsIdx;
continue;
}
if (Ty->isVectorTy()) {
EVT ObjectVT = getValueType(Ty);
unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
for (unsigned parti = 0; parti < NumRegs; ++parti) {
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
++InsIdx;
}
if (NumRegs > 0)
--InsIdx;
continue;
}
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
continue;
}
// In the following cases, assign a node order of "idx+1"
// to newly created nodes. The SDNodes for params have to
// appear in the same order as their order of appearance
// in the original function. "idx+1" holds that order.
if (PAL.hasAttribute(i + 1, Attribute::ByVal) == false) {
if (Ty->isAggregateType()) {
SmallVector<EVT, 16> vtparts;
SmallVector<uint64_t, 16> offsets;
// NOTE: Here, we lose the ability to issue vector loads for vectors
// that are a part of a struct. This should be investigated in the
// future.
ComputePTXValueVTs(*this, Ty, vtparts, &offsets, 0);
assert(vtparts.size() > 0 && "empty aggregate type not expected");
bool aggregateIsPacked = false;
if (StructType *STy = llvm::dyn_cast<StructType>(Ty))
aggregateIsPacked = STy->isPacked();
SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
++parti) {
EVT partVT = vtparts[parti];
Value *srcValue = Constant::getNullValue(
PointerType::get(partVT.getTypeForEVT(F->getContext()),
llvm::ADDRESS_SPACE_PARAM));
SDValue srcAddr =
DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
DAG.getConstant(offsets[parti], getPointerTy()));
unsigned partAlign =
aggregateIsPacked ? 1
: TD->getABITypeAlignment(
partVT.getTypeForEVT(F->getContext()));
SDValue p;
if (Ins[InsIdx].VT.getSizeInBits() > partVT.getSizeInBits()) {
ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
ISD::SEXTLOAD : ISD::ZEXTLOAD;
p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, srcAddr,
MachinePointerInfo(srcValue), partVT, false,
false, partAlign);
} else {
p = DAG.getLoad(partVT, dl, Root, srcAddr,
MachinePointerInfo(srcValue), false, false, false,
partAlign);
}
if (p.getNode())
p.getNode()->setIROrder(idx + 1);
InVals.push_back(p);
++InsIdx;
}
if (vtparts.size() > 0)
--InsIdx;
continue;
}
if (Ty->isVectorTy()) {
EVT ObjectVT = getValueType(Ty);
SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
unsigned NumElts = ObjectVT.getVectorNumElements();
assert(TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts &&
"Vector was not scalarized");
unsigned Ofst = 0;
EVT EltVT = ObjectVT.getVectorElementType();
// V1 load
// f32 = load ...
if (NumElts == 1) {
// We only have one element, so just directly load it
Value *SrcValue = Constant::getNullValue(PointerType::get(
EltVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
DAG.getConstant(Ofst, getPointerTy()));
SDValue P = DAG.getLoad(
EltVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
false, true,
TD->getABITypeAlignment(EltVT.getTypeForEVT(F->getContext())));
if (P.getNode())
P.getNode()->setIROrder(idx + 1);
if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
P = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, P);
InVals.push_back(P);
Ofst += TD->getTypeAllocSize(EltVT.getTypeForEVT(F->getContext()));
++InsIdx;
} else if (NumElts == 2) {
// V2 load
// f32,f32 = load ...
EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, 2);
Value *SrcValue = Constant::getNullValue(PointerType::get(
VecVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
DAG.getConstant(Ofst, getPointerTy()));
SDValue P = DAG.getLoad(
VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
false, true,
TD->getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
if (P.getNode())
P.getNode()->setIROrder(idx + 1);
SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
DAG.getIntPtrConstant(0));
SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
DAG.getIntPtrConstant(1));
if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits()) {
Elt0 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt0);
Elt1 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt1);
}
InVals.push_back(Elt0);
InVals.push_back(Elt1);
Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
InsIdx += 2;
} else {
// V4 loads
// We have at least 4 elements (<3 x Ty> expands to 4 elements) and
// the
// vector will be expanded to a power of 2 elements, so we know we can
// always round up to the next multiple of 4 when creating the vector
// loads.
// e.g. 4 elem => 1 ld.v4
// 6 elem => 2 ld.v4
// 8 elem => 2 ld.v4
// 11 elem => 3 ld.v4
unsigned VecSize = 4;
if (EltVT.getSizeInBits() == 64) {
VecSize = 2;
}
EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
for (unsigned i = 0; i < NumElts; i += VecSize) {
Value *SrcValue = Constant::getNullValue(
PointerType::get(VecVT.getTypeForEVT(F->getContext()),
llvm::ADDRESS_SPACE_PARAM));
SDValue SrcAddr =
DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
DAG.getConstant(Ofst, getPointerTy()));
SDValue P = DAG.getLoad(
VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
false, true,
TD->getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
if (P.getNode())
P.getNode()->setIROrder(idx + 1);
for (unsigned j = 0; j < VecSize; ++j) {
if (i + j >= NumElts)
break;
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
DAG.getIntPtrConstant(j));
if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
Elt = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt);
InVals.push_back(Elt);
}
Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
}
InsIdx += NumElts;
}
if (NumElts > 0)
--InsIdx;
continue;
}
// A plain scalar.
EVT ObjectVT = getValueType(Ty);
// If ABI, load from the param symbol
SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
Value *srcValue = Constant::getNullValue(PointerType::get(
ObjectVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
SDValue p;
if (ObjectVT.getSizeInBits() < Ins[InsIdx].VT.getSizeInBits()) {
ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
ISD::SEXTLOAD : ISD::ZEXTLOAD;
p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, Arg,
MachinePointerInfo(srcValue), ObjectVT, false, false,
TD->getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
} else {
p = DAG.getLoad(Ins[InsIdx].VT, dl, Root, Arg,
MachinePointerInfo(srcValue), false, false, false,
TD->getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
}
if (p.getNode())
p.getNode()->setIROrder(idx + 1);
InVals.push_back(p);
continue;
}
// Param has ByVal attribute
// Return MoveParam(param symbol).
// Ideally, the param symbol can be returned directly,
// but when SDNode builder decides to use it in a CopyToReg(),
// machine instruction fails because TargetExternalSymbol
// (not lowered) is target dependent, and CopyToReg assumes
// the source is lowered.
EVT ObjectVT = getValueType(Ty);
assert(ObjectVT == Ins[InsIdx].VT &&
"Ins type did not match function type");
SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
if (p.getNode())
p.getNode()->setIROrder(idx + 1);
if (isKernel)
InVals.push_back(p);
else {
SDValue p2 = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT,
DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, MVT::i32), p);
InVals.push_back(p2);
}
}
// Clang will check explicit VarArg and issue error if any. However, Clang
// will let code with
// implicit var arg like f() pass. See bug 617733.
// We treat this case as if the arg list is empty.
// if (F.isVarArg()) {
// assert(0 && "VarArg not supported yet!");
//}
if (!OutChains.empty())
DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0],
OutChains.size()));
return Chain;
}
SDValue
NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const Function *F = MF.getFunction();
Type *RetTy = F->getReturnType();
const DataLayout *TD = getDataLayout();
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
assert(isABI && "Non-ABI compilation is not supported");
if (!isABI)
return Chain;
if (VectorType *VTy = dyn_cast<VectorType>(RetTy)) {
// If we have a vector type, the OutVals array will be the scalarized
// components and we have combine them into 1 or more vector stores.
unsigned NumElts = VTy->getNumElements();
assert(NumElts == Outs.size() && "Bad scalarization of return value");
// const_cast can be removed in later LLVM versions
EVT EltVT = getValueType(RetTy).getVectorElementType();
bool NeedExtend = false;
if (EltVT.getSizeInBits() < 16)
NeedExtend = true;
// V1 store
if (NumElts == 1) {
SDValue StoreVal = OutVals[0];
// We only have one element, so just directly store it
if (NeedExtend)
StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
SDValue Ops[] = { Chain, DAG.getConstant(0, MVT::i32), StoreVal };
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
DAG.getVTList(MVT::Other), &Ops[0], 3,
EltVT, MachinePointerInfo());
} else if (NumElts == 2) {
// V2 store
SDValue StoreVal0 = OutVals[0];
SDValue StoreVal1 = OutVals[1];
if (NeedExtend) {
StoreVal0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal0);
StoreVal1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal1);
}
SDValue Ops[] = { Chain, DAG.getConstant(0, MVT::i32), StoreVal0,
StoreVal1 };
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetvalV2, dl,
DAG.getVTList(MVT::Other), &Ops[0], 4,
EltVT, MachinePointerInfo());
} else {
// V4 stores
// We have at least 4 elements (<3 x Ty> expands to 4 elements) and the
// vector will be expanded to a power of 2 elements, so we know we can
// always round up to the next multiple of 4 when creating the vector
// stores.
// e.g. 4 elem => 1 st.v4
// 6 elem => 2 st.v4
// 8 elem => 2 st.v4
// 11 elem => 3 st.v4
unsigned VecSize = 4;
if (OutVals[0].getValueType().getSizeInBits() == 64)
VecSize = 2;
unsigned Offset = 0;
EVT VecVT =
EVT::getVectorVT(F->getContext(), OutVals[0].getValueType(), VecSize);
unsigned PerStoreOffset =
TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
for (unsigned i = 0; i < NumElts; i += VecSize) {
// Get values
SDValue StoreVal;
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(DAG.getConstant(Offset, MVT::i32));
unsigned Opc = NVPTXISD::StoreRetvalV2;
EVT ExtendedVT = (NeedExtend) ? MVT::i16 : OutVals[0].getValueType();
StoreVal = OutVals[i];
if (NeedExtend)
StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
Ops.push_back(StoreVal);
if (i + 1 < NumElts) {
StoreVal = OutVals[i + 1];
if (NeedExtend)
StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
} else {
StoreVal = DAG.getUNDEF(ExtendedVT);
}
Ops.push_back(StoreVal);
if (VecSize == 4) {
Opc = NVPTXISD::StoreRetvalV4;
if (i + 2 < NumElts) {
StoreVal = OutVals[i + 2];
if (NeedExtend)
StoreVal =
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
} else {
StoreVal = DAG.getUNDEF(ExtendedVT);
}
Ops.push_back(StoreVal);
if (i + 3 < NumElts) {
StoreVal = OutVals[i + 3];
if (NeedExtend)
StoreVal =
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
} else {
StoreVal = DAG.getUNDEF(ExtendedVT);
}
Ops.push_back(StoreVal);
}
// Chain = DAG.getNode(Opc, dl, MVT::Other, &Ops[0], Ops.size());
Chain =
DAG.getMemIntrinsicNode(Opc, dl, DAG.getVTList(MVT::Other), &Ops[0],
Ops.size(), EltVT, MachinePointerInfo());
Offset += PerStoreOffset;
}
}
} else {
SmallVector<EVT, 16> ValVTs;
// const_cast is necessary since we are still using an LLVM version from
// before the type system re-write.
ComputePTXValueVTs(*this, RetTy, ValVTs);
assert(ValVTs.size() == OutVals.size() && "Bad return value decomposition");
unsigned SizeSoFar = 0;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
SDValue theVal = OutVals[i];
EVT TheValType = theVal.getValueType();
unsigned numElems = 1;
if (TheValType.isVector())
numElems = TheValType.getVectorNumElements();
for (unsigned j = 0, je = numElems; j != je; ++j) {
SDValue TmpVal = theVal;
if (TheValType.isVector())
TmpVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
TheValType.getVectorElementType(), TmpVal,
DAG.getIntPtrConstant(j));
EVT TheStoreType = ValVTs[i];
if (RetTy->isIntegerTy() &&
TD->getTypeAllocSizeInBits(RetTy) < 32) {
// The following zero-extension is for integer types only, and
// specifically not for aggregates.
TmpVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, TmpVal);
TheStoreType = MVT::i32;
}
else if (TmpVal.getValueType().getSizeInBits() < 16)
TmpVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, TmpVal);
SDValue Ops[] = { Chain, DAG.getConstant(SizeSoFar, MVT::i32), TmpVal };
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
DAG.getVTList(MVT::Other), &Ops[0],
3, TheStoreType,
MachinePointerInfo());
if(TheValType.isVector())
SizeSoFar +=
TheStoreType.getVectorElementType().getStoreSizeInBits() / 8;
else
SizeSoFar += TheStoreType.getStoreSizeInBits()/8;
}
}
}
return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
}
void NVPTXTargetLowering::LowerAsmOperandForConstraint(
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
if (Constraint.length() > 1)
return;
else
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
// NVPTX suuport vector of legal types of any length in Intrinsics because the
// NVPTX specific type legalizer
// will legalize them to the PTX supported length.
bool NVPTXTargetLowering::isTypeSupportedInIntrinsic(MVT VT) const {
if (isTypeLegal(VT))
return true;
if (VT.isVector()) {
MVT eVT = VT.getVectorElementType();
if (isTypeLegal(eVT))
return true;
}
return false;
}
// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
// TgtMemIntrinsic
// because we need the information that is only available in the "Value" type
// of destination
// pointer. In particular, the address space information.
bool NVPTXTargetLowering::getTgtMemIntrinsic(
IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const {
switch (Intrinsic) {
default:
return false;
case Intrinsic::nvvm_atomic_load_add_f32:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::f32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.vol = 0;
Info.readMem = true;
Info.writeMem = true;
Info.align = 0;
return true;
case Intrinsic::nvvm_atomic_load_inc_32:
case Intrinsic::nvvm_atomic_load_dec_32:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.vol = 0;
Info.readMem = true;
Info.writeMem = true;
Info.align = 0;
return true;
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p:
Info.opc = ISD::INTRINSIC_W_CHAIN;
if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
Info.memVT = getValueType(I.getType());
else if (Intrinsic == Intrinsic::nvvm_ldu_global_p)
Info.memVT = getValueType(I.getType());
else
Info.memVT = MVT::f32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.vol = 0;
Info.readMem = true;
Info.writeMem = false;
Info.align = 0;
return true;
}
return false;
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
/// Used to guide target specific optimizations, like loop strength reduction
/// (LoopStrengthReduce.cpp) and memory optimization for address mode
/// (CodeGenPrepare.cpp)
bool NVPTXTargetLowering::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// AddrMode - This represents an addressing mode of:
// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
//
// The legal address modes are
// - [avar]
// - [areg]
// - [areg+immoff]
// - [immAddr]
if (AM.BaseGV) {
if (AM.BaseOffs || AM.HasBaseReg || AM.Scale)
return false;
return true;
}
switch (AM.Scale) {
case 0: // "r", "r+i" or "i" is allowed
break;
case 1:
if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
return false;
// Otherwise we have r+i.
break;
default:
// No scale > 1 is allowed
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// NVPTX Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
NVPTXTargetLowering::ConstraintType
NVPTXTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'r':
case 'h':
case 'c':
case 'l':
case 'f':
case 'd':
case '0':
case 'N':
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass *>
NVPTXTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'c':
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
case 'h':
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
case 'r':
return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
case 'l':
case 'N':
return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
case 'f':
return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
case 'd':
return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
/// getFunctionAlignment - Return the Log2 alignment of this function.
unsigned NVPTXTargetLowering::getFunctionAlignment(const Function *) const {
return 4;
}
/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) {
EVT ResVT = N->getValueType(0);
SDLoc DL(N);
assert(ResVT.isVector() && "Vector load must have vector type");
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
// legal. We can (and should) split that into 2 loads of <2 x double> here
// but I'm leaving that as a TODO for now.
assert(ResVT.isSimple() && "Can only handle simple types");
switch (ResVT.getSimpleVT().SimpleTy) {
default:
return;
case MVT::v2i8:
case MVT::v2i16:
case MVT::v2i32:
case MVT::v2i64:
case MVT::v2f32:
case MVT::v2f64:
case MVT::v4i8:
case MVT::v4i16:
case MVT::v4i32:
case MVT::v4f32:
// This is a "native" vector type
break;
}
EVT EltVT = ResVT.getVectorElementType();
unsigned NumElts = ResVT.getVectorNumElements();
// Since LoadV2 is a target node, we cannot rely on DAG type legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// loaded type to i16 and propogate the "real" type as the memory type.
bool NeedTrunc = false;
if (EltVT.getSizeInBits() < 16) {
EltVT = MVT::i16;
NeedTrunc = true;
}
unsigned Opcode = 0;
SDVTList LdResVTs;
switch (NumElts) {
default:
return;
case 2:
Opcode = NVPTXISD::LoadV2;
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
break;
case 4: {
Opcode = NVPTXISD::LoadV4;
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
LdResVTs = DAG.getVTList(ListVTs, 5);
break;
}
}
SmallVector<SDValue, 8> OtherOps;
// Copy regular operands
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
OtherOps.push_back(N->getOperand(i));
LoadSDNode *LD = cast<LoadSDNode>(N);
// The select routine does not have access to the LoadSDNode instance, so
// pass along the extension information
OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType()));
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, &OtherOps[0],
OtherOps.size(), LD->getMemoryVT(),
LD->getMemOperand());
SmallVector<SDValue, 4> ScalarRes;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewLD.getValue(i);
if (NeedTrunc)
Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
ScalarRes.push_back(Res);
}
SDValue LoadChain = NewLD.getValue(NumElts);
SDValue BuildVec =
DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, &ScalarRes[0], NumElts);
Results.push_back(BuildVec);
Results.push_back(LoadChain);
}
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) {
SDValue Chain = N->getOperand(0);
SDValue Intrin = N->getOperand(1);
SDLoc DL(N);
// Get the intrinsic ID
unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
switch (IntrinNo) {
default:
return;
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p:
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p: {
EVT ResVT = N->getValueType(0);
if (ResVT.isVector()) {
// Vector LDG/LDU
unsigned NumElts = ResVT.getVectorNumElements();
EVT EltVT = ResVT.getVectorElementType();
// Since LDU/LDG are target nodes, we cannot rely on DAG type
// legalization.
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
// loaded type to i16 and propogate the "real" type as the memory type.
bool NeedTrunc = false;
if (EltVT.getSizeInBits() < 16) {
EltVT = MVT::i16;
NeedTrunc = true;
}
unsigned Opcode = 0;
SDVTList LdResVTs;
switch (NumElts) {
default:
return;
case 2:
switch (IntrinNo) {
default:
return;
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p:
Opcode = NVPTXISD::LDGV2;
break;
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p:
Opcode = NVPTXISD::LDUV2;
break;
}
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
break;
case 4: {
switch (IntrinNo) {
default:
return;
case Intrinsic::nvvm_ldg_global_i:
case Intrinsic::nvvm_ldg_global_f:
case Intrinsic::nvvm_ldg_global_p:
Opcode = NVPTXISD::LDGV4;
break;
case Intrinsic::nvvm_ldu_global_i:
case Intrinsic::nvvm_ldu_global_f:
case Intrinsic::nvvm_ldu_global_p:
Opcode = NVPTXISD::LDUV4;
break;
}
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
LdResVTs = DAG.getVTList(ListVTs, 5);
break;
}
}
SmallVector<SDValue, 8> OtherOps;
// Copy regular operands
OtherOps.push_back(Chain); // Chain
// Skip operand 1 (intrinsic ID)
// Others
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i)
OtherOps.push_back(N->getOperand(i));
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
SDValue NewLD = DAG.getMemIntrinsicNode(
Opcode, DL, LdResVTs, &OtherOps[0], OtherOps.size(),
MemSD->getMemoryVT(), MemSD->getMemOperand());
SmallVector<SDValue, 4> ScalarRes;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Res = NewLD.getValue(i);
if (NeedTrunc)
Res =
DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
ScalarRes.push_back(Res);
}
SDValue LoadChain = NewLD.getValue(NumElts);
SDValue BuildVec =
DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, &ScalarRes[0], NumElts);
Results.push_back(BuildVec);
Results.push_back(LoadChain);
} else {
// i8 LDG/LDU
assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
"Custom handling of non-i8 ldu/ldg?");
// Just copy all operands as-is
SmallVector<SDValue, 4> Ops;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
Ops.push_back(N->getOperand(i));
// Force output to i16
SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
// We make sure the memory type is i8, which will be used during isel
// to select the proper instruction.
SDValue NewLD =
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, &Ops[0],
Ops.size(), MVT::i8, MemSD->getMemOperand());
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
NewLD.getValue(0)));
Results.push_back(NewLD.getValue(1));
}
}
}
}
void NVPTXTargetLowering::ReplaceNodeResults(
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
switch (N->getOpcode()) {
default:
report_fatal_error("Unhandled custom legalization");
case ISD::LOAD:
ReplaceLoadVector(N, DAG, Results);
return;
case ISD::INTRINSIC_W_CHAIN:
ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
return;
}
}
// Pin NVPTXSection's and NVPTXTargetObjectFile's vtables to this file.
void NVPTXSection::anchor() {}
NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {
delete TextSection;
delete DataSection;
delete BSSSection;
delete ReadOnlySection;
delete StaticCtorSection;
delete StaticDtorSection;
delete LSDASection;
delete EHFrameSection;
delete DwarfAbbrevSection;
delete DwarfInfoSection;
delete DwarfLineSection;
delete DwarfFrameSection;
delete DwarfPubTypesSection;
delete DwarfDebugInlineSection;
delete DwarfStrSection;
delete DwarfLocSection;
delete DwarfARangesSection;
delete DwarfRangesSection;
delete DwarfMacroInfoSection;
}