While this is not a wonderful organizing principle, it
does make it easy to find routines, and clear where to
insert new ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53672 91177308-0d34-0410-b5e6-96231b3b80d8
In LegalizeDAG the value is zero-extended to
the new type before byte swapping. It doesn't
matter how the extension is done since the new
bits are shifted off anyway after the swap, so
extend by any old rubbish bits. This results
in the final assembler for the testcase being
one line shorter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53604 91177308-0d34-0410-b5e6-96231b3b80d8
than the vector element type. Don't forget to
handle this when the insertion index is not a
constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53556 91177308-0d34-0410-b5e6-96231b3b80d8
extending load of a vector. Handle this case when
splitting vector loads. I'm not completely sure
what is supposed to happen, but I think it means
hi should be set to undef. LegalizeDAG does not
consider this case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53555 91177308-0d34-0410-b5e6-96231b3b80d8
stores of one-element vectors. Also, neaten the
handling of INSERT_VECTOR_ELT when the inserted
type is larger than the vector element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53554 91177308-0d34-0410-b5e6-96231b3b80d8
are used for passing huge immediates in inline ASM
from the front-end straight down to the ASM writer.
Of course this is a hack, but it is simple, limited
in scope, works in practice, and is what LegalizeDAG
does.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53553 91177308-0d34-0410-b5e6-96231b3b80d8
8 %reg1024<def> = IMPLICIT_DEF
12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
The live range [12, 14) are not part of the r1024 live interval since it's defined by an implicit def. It will not conflicts with live interval of r1025. Now suppose both registers are spilled, you can easily see a situation where both registers are reloaded before the INSERT_SUBREG and both target registers that would overlap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53503 91177308-0d34-0410-b5e6-96231b3b80d8
use a timer group for the timers in SelectionDAGISel. Also,
Split scheduling out from emitting, to give each their own
timer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53476 91177308-0d34-0410-b5e6-96231b3b80d8
SINT_TO_FP libcall plus additional operations:
it might as well be a direct UINT_TO_FP libcall.
So only turn it into an SINT_TO_FP if the target
has special handling for SINT_TO_FP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53461 91177308-0d34-0410-b5e6-96231b3b80d8
when working on legalizetypes. Both legalizetypes and legalizeops now
produce hte same code for CodeGen/ARM/fcopysign.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53435 91177308-0d34-0410-b5e6-96231b3b80d8
Lack of these caused a bootstrap failure with Fortran
on x86-64 with LegalizeTypes turned on. While there,
be nice to 16 bit machines and support expansion of
i32 too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53408 91177308-0d34-0410-b5e6-96231b3b80d8
- Change local register allocator to use the new isRegReDefinedByTwoAddr instead of reinventing the wheel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53394 91177308-0d34-0410-b5e6-96231b3b80d8
makes their special-case checks of use_size() less beneficial,
so remove them. This eliminates all but one use of use_size(),
which is in AssignTopologicalOrder, which uses it only once for
each node, and so can reasonably afford to recompute it, as
this allows the UsesSize field of SDNode to be removed
altogether.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53377 91177308-0d34-0410-b5e6-96231b3b80d8
class, and store IsVolatile and Alignment in a more compact form.
This makes AtomicSDNode slightly larger, but it shrinks LoadSDNode
and StoreSDNode, which are much more common and are the largest of
the SDNode subclasses. Also, this lets the isVolatile() and
getAlignment() accessors be non-virtual.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53361 91177308-0d34-0410-b5e6-96231b3b80d8
SINT_TO_FP and UINT_TO_FP. This now produces
the same code as LegalizeDAG (the previous
code was based on a mistaken idea of what
LegalizeDAG did in this case).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53288 91177308-0d34-0410-b5e6-96231b3b80d8
available to getAtomic in addition to just getLoad and getStore,
to prevent MachineMemOperands with 0 alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53261 91177308-0d34-0410-b5e6-96231b3b80d8
rather than depending on LiveVariables. This decreases compile time from:
0.5909s (LV + Regalloc) to 0.421s (just regalloc).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53256 91177308-0d34-0410-b5e6-96231b3b80d8
soft float: experiments show that targets aren't
expecting this for results or for operands. Add
support select/select_cc result soft float and
correct operand soft float for these.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53245 91177308-0d34-0410-b5e6-96231b3b80d8
MachineMemOperands. The pools are owned by MachineFunctions.
This drastically reduces the number of calls to malloc/free made
during the "Emit" phase of scheduling, as well as later phases
in CodeGen. Combined with other changes, this speeds up the
"instruction selection" phase of CodeGen by 10% in some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53212 91177308-0d34-0410-b5e6-96231b3b80d8
and reused across SelectionDAGs.
This drastically reduces the number of calls to malloc/free made during
instruction selection, and improves memory locality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53211 91177308-0d34-0410-b5e6-96231b3b80d8
properly track dead nodes that are on the original SDNode's operand
list but not the new one, and have no other uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53201 91177308-0d34-0410-b5e6-96231b3b80d8
simple const SDOperand*, which is what's usually needed.
For AddNodeIDOperands, which is small, just duplicate the function to
accept an SDUse*.
For SelectionDAG::getNode - Add an overload that accepts SDUse* that
copies the operands into a temporary SDOperand array, but also has
special-case checks for 0 through 3 operands to avoid the copy in
the common cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53183 91177308-0d34-0410-b5e6-96231b3b80d8
that fixed problems in EmitStackConvert where the source and target type
have different alignment by creating a stack slot with the max
alignment of source and target type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53150 91177308-0d34-0410-b5e6-96231b3b80d8
hook for each way in which a result type can be
legalized (promotion, expansion, softening etc),
just use one: ReplaceNodeResults, which returns
a node with exactly the same result types as the
node passed to it, but presumably with a bunch of
custom code behind the scenes. No change if the
new LegalizeTypes infrastructure is not turned on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53137 91177308-0d34-0410-b5e6-96231b3b80d8
moves in order to get correct debug info. Since
I can't imagine how any target could possibly
be any different, I've just stripped out the
option: now all the world's like Darwin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53134 91177308-0d34-0410-b5e6-96231b3b80d8