ilist of MachineInstr objects. This allows constant time removal and
insertion of MachineInstr instances from anywhere in each
MachineBasicBlock. It also allows for constant time splicing of
MachineInstrs into or out of MachineBasicBlocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11340 91177308-0d34-0410-b5e6-96231b3b80d8
MO_VirtualRegister but if the register number is one of a physical
register is it considered as a physical register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11315 91177308-0d34-0410-b5e6-96231b3b80d8
more of a testcase for profiling information than anything that should reasonably
be used, but it's a starting point. When I have more time I will whip this into
better shape.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11311 91177308-0d34-0410-b5e6-96231b3b80d8
Having a proper 'select' instruction would allow the elimination of a lot
of the special case cruft in this patch, but we don't have one yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11307 91177308-0d34-0410-b5e6-96231b3b80d8
passed into main, make sure they use the return value of the init call
instead of the one passed in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11262 91177308-0d34-0410-b5e6-96231b3b80d8
I will observe that the concept of using WriteAsOperand is completely broken,
but then we all knew that, didn't we?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11255 91177308-0d34-0410-b5e6-96231b3b80d8
in this for programs with lots of types (like the testcase in PR224).
The problem was that the type ID that the outer vector was using was not
very dense (as many types are getting resolved), so the vector is large
and gets reallocated a lot.
Since there are a lot of values in the program (the .ll file is 10M),
each reallocation has to copy the subvectors, which is also quite slow
(this wouldn't be a problem if C++ supported move semantics, but it
doesn't, at least not yet :(
Changing the outer data structure to a map speeds a release build of
llvm-as up from 11.21s to 5.13s on the testcase in PR224.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11244 91177308-0d34-0410-b5e6-96231b3b80d8
this speeds up a release llvm-as from 21.95s to 11.21s, because before it
would do an expensive traversal of the type-graph of every type resolved.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11242 91177308-0d34-0410-b5e6-96231b3b80d8
type at the same time, resolve the upreferences to each other before resolving
it to the outer type. This shaves off some time from the testcase in PR224, from
25.41s -> 21.72s.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11241 91177308-0d34-0410-b5e6-96231b3b80d8
instead of randomly groping about inside its outEdges array.
Make SchedGraph::addDummyEdges() use getNumOutEdges() instead of
outEdges.size().
Get rid of ifdefed-out code in SchedGraph::buildGraph().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11238 91177308-0d34-0410-b5e6-96231b3b80d8
consistent across the various type classes, we can factor out a LOT more
almost-identical code. Also, add a couple of temporary statistics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11232 91177308-0d34-0410-b5e6-96231b3b80d8
all of the ad-hoc storage of contained types. This allows getContainedType to
not be virtual, and allows us to entirely delete the TypeIterator class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11230 91177308-0d34-0410-b5e6-96231b3b80d8
contains the type we are looking for, just search the immediately used types.
We can only do this because we keep the "current" type in the nesting level
as we decrement upreferences.
This change speeds up the testcase in PR224 from 50.4s to 22.08s, not
too shabby.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11221 91177308-0d34-0410-b5e6-96231b3b80d8
the Virt2PhysRegMap std::map with an std::vector. This speeds up the
register allocator another (almost) 40%, from .72->.45s in a release build
of LLC on 253.perlbmk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11219 91177308-0d34-0410-b5e6-96231b3b80d8
This speeds up live variables a lot, from .60/.39s -> .47/.26s in LLC, for
the first/second pass respectively.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11216 91177308-0d34-0410-b5e6-96231b3b80d8
from physical registers, and they are always dense, it makes sense to not have
a ton of RBtree overhead. This change speeds up regalloclocal about ~30% on
253.perlbmk, from .35s -> .27s in the JIT (in LLC, it goes from .74 -> .55).
Now live variable analysis is the slowest codegen pass. Of course it doesn't
help that we have to run it twice, because regalloclocal doesn't update it,
but even if it did it would be the slowest pass (now it's just the 2x slowest
pass :(
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11215 91177308-0d34-0410-b5e6-96231b3b80d8
1. The "work" was not in the assert, so it was punishing the optimized release
2. getNamedFunction is _very_ expensive in large programs. It is not designed
to be used like this, and was taking 7% of the execution time of the code
generator on perlbmk.
Since the assert "can never fail", I'm just killing it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11214 91177308-0d34-0410-b5e6-96231b3b80d8
This causes the JIT, or LLC'd program to print out a nice message, explaining
WHY the program aborted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11184 91177308-0d34-0410-b5e6-96231b3b80d8
removeDeadNodes is called, only call it at the end of the pass being run.
This saves 1.3 seconds running DSA on 177.mesa (5.3->4.0s), which is
pretty big. This is only possible because of the automatic garbage
collection done on forwarding nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11178 91177308-0d34-0410-b5e6-96231b3b80d8
DSGraphs while they are forwarding. When the last reference to the forwarding
node is dropped, the forwarding node is autodeleted. This should simplify
removeTriviallyDead nodes, and is only (efficiently) possible because we are
using an ilist of dsnodes now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11175 91177308-0d34-0410-b5e6-96231b3b80d8
slots each. As a concequence they get numbered as 0, 2, 4 and so
on. The first slot is used for operand uses and the second for
defs. Here's an example:
0: A = ...
2: B = ...
4: C = A + B ;; last use of A
The live intervals should look like:
A = [1, 5)
B = [3, x)
C = [5, y)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11141 91177308-0d34-0410-b5e6-96231b3b80d8
The problem is that the dominator update code didn't "realize" that it's
possible for the newly inserted basic block to dominate anything. Because
it IS possible, stuff was getting updated wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11137 91177308-0d34-0410-b5e6-96231b3b80d8
complete rewrite of load-vn will make it a bit faster. This changes speeds up
the gcse pass (which uses load-vn) from 25.45s to 0.42s on the testcase in
PR209.
I've also verified that this gives the exact same results as the old one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11132 91177308-0d34-0410-b5e6-96231b3b80d8