its work by putting all nodes in the worklist, requiring a big
dynamic allocation. Now, DAGCombiner just iterates over the AllNodes
list and maintains a worklist for nodes that are newly created or
need to be revisited. This allows the worklist to stay small in most
cases, so it can be a SmallVector.
This has the side effect of making DAGCombine not miss a folding
opportunity in alloca-align-rounding.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55498 91177308-0d34-0410-b5e6-96231b3b80d8
parallel its analogue, Value::value_use_iterator. The operator* method
now returns the user, rather than the use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54127 91177308-0d34-0410-b5e6-96231b3b80d8
that include useful information like the name of the
block being viewed and the current phase of compilation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53872 91177308-0d34-0410-b5e6-96231b3b80d8
generic SDNode's (nodes with their own constructors
should do sanity checking in the constructor). Add
sanity checks for BUILD_VECTOR and fix all the places
that were producing bogus BUILD_VECTORs, as found by
"make check". My favorite is the BUILD_VECTOR with
only two operands that was being used to build a
vector with four elements!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53850 91177308-0d34-0410-b5e6-96231b3b80d8
the night realising that it was wrong :) I
think the reason the same type was being used
for the shufflevec of indices as for the actual
indices is so that if one of them needs splitting
then so does the other. After my patch it might
be that the indices need splitting but not the
rest, yet there is no good way of handling that.
I think the right solution is to not have the
shufflevec be an operand at all: just have it
be the list of numbers it actually is, stored
as extra info in the node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53768 91177308-0d34-0410-b5e6-96231b3b80d8
mask. These are just indices into the shuffled vector
so their type is unrelated to the type of the
shuffled elements (which is what was being used before).
This fixes vec_shuffle-11.ll when using LegalizeTypes.
What seems to have happened is that Dan's recent change
r53687, which corrected the result type of the shuffle,
somehow caused LegalizeTypes to notice that the mask
operand was a BUILD_VECTOR with a legal type but elements
of an illegal type (i64). LegalizeTypes legalized this
by introducing a new BUILD_VECTOR of i32 and bitcasting
it to the old type. But the mask operand is not supposed
to be a bitcast but a straight BUILD_VECTOR of constants,
causing a crash.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53729 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG::allnodes_size is linear, but that doesn't appear to
outweigh the benefit of reducing heap traffic. If it does become a
problem, we should teach SelectionDAG to keep a count of how many
nodes are live, because there are several other places where that
information would be useful as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52926 91177308-0d34-0410-b5e6-96231b3b80d8
information of the original load or store, which is checked to be
at least as good, and possibly better.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52849 91177308-0d34-0410-b5e6-96231b3b80d8
still excluding types like i1 (not byte sized)
and i120 (loading an i120 requires loading an i64,
an i32, an i16 and an i8, which is expensive).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52310 91177308-0d34-0410-b5e6-96231b3b80d8
not valid if the load is volatile. Hopefully
all wrong DAG combiner transforms of volatile
loads and stores have now been caught.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52293 91177308-0d34-0410-b5e6-96231b3b80d8
on some code when !AfterLegalize - but since
this whole code section is turned off by an
"if (0)" it's not really turning anything on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52276 91177308-0d34-0410-b5e6-96231b3b80d8
wrong for volatile loads and stores. In fact this
is almost all of them! There are three types of
problems: (1) it is wrong to change the width of
a volatile memory access. These may be used to
do memory mapped i/o, in which case a load can have
an effect even if the result is not used. Consider
loading an i32 but only using the lower 8 bits. It
is wrong to change this into a load of an i8, because
you are no longer tickling the other three bytes. It
is also unwise to make a load/store wider. For
example, changing an i16 load into an i32 load is
wrong no matter how aligned things are, since the
fact of loading an additional 2 bytes can have
i/o side-effects. (2) it is wrong to change the
number of volatile load/stores: they may be counted
by the hardware. (3) it is wrong to change a volatile
load/store that requires one memory access into one
that requires several. For example on x86-32, you
can store a double in one processor operation, but to
store an i64 requires two (two i32 stores). In a
multi-threaded program you may want to bitcast an i64
to a double and store as a double because that will
occur atomically, and be indivisible to other threads.
So it would be wrong to convert the store-of-double
into a store of an i64, because this will become two
i32 stores - no longer atomic. My policy here is
to say that the number of processor operations for
an illegal operation is undefined. So it is alright
to change a store of an i64 (requires at least two
stores; but could be validly lowered to memcpy for
example) into a store of double (one processor op).
In short, if the new store is legal and has the same
size then I say that the transform is ok. It would
also be possible to say that transforms are always
ok if before they were illegal, whether after they
are illegal or not, but that's more awkward to do
and I doubt it buys us anything much.
However this exposed an interesting thing - on x86-32
a store of i64 is considered legal! That is because
operations are marked legal by default, regardless of
whether the type is legal or not. In some ways this
is clever: before type legalization this means that
operations on illegal types are considered legal;
after type legalization there are no illegal types
so now operations are only legal if they really are.
But I consider this to be too cunning for mere mortals.
Better to do things explicitly by testing AfterLegalize.
So I have changed things so that operations with illegal
types are considered illegal - indeed they can never
map to a machine operation. However this means that
the DAG combiner is more conservative because before
it was "accidentally" performing transforms where the
type was illegal because the operation was nonetheless
marked legal. So in a few such places I added a check
on AfterLegalize, which I suppose was actually just
forgotten before. This causes the DAG combiner to do
slightly more than it used to, which resulted in the X86
backend blowing up because it got a slightly surprising
node it wasn't expecting, so I tweaked it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52254 91177308-0d34-0410-b5e6-96231b3b80d8
maps can be deleted. This happens when RAUW
replaces a node N with another equivalent node
E, deleting the first node. Solve this by
adding (N, E) to ReplacedNodes, which is already
used to remap nodes to replacements. This means
that deleted nodes are being allowed in maps,
which can be delicate: the memory may be reused
for a new node which might get confused with the
old deleted node pointer hanging around in the
maps, so detect this and flush out maps if it
occurs (ExpungeNode). The expunging operation
is expensive, however it never occurs during
a llvm-gcc bootstrap or anywhere in the nightly
testsuite. It occurs three times in "make check":
Alpha/illegal-element-type.ll,
PowerPC/illegal-element-type.ll and
X86/mmx-shift.ll. If expunging proves to be too
expensive then there are other more complicated
ways of solving the problem.
In the normal case this patch adds the overhead
of a few more map lookups, which is hopefully
negligable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52214 91177308-0d34-0410-b5e6-96231b3b80d8
of integer types. Fix the isMask APInt method to
actually work (hopefully) rather than crashing
because it adds apints of different bitwidths.
It looks like isShiftedMask is also broken, but
I'm leaving that one to the APInt people (it is
not used anywhere).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52142 91177308-0d34-0410-b5e6-96231b3b80d8
of apint codegen failure is the DAG combiner doing
the wrong thing because it was comparing MVT's using
< rather than comparing the number of bits. Removing
the < method makes this mistake impossible to commit.
Instead, add helper methods for comparing bits and use
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52098 91177308-0d34-0410-b5e6-96231b3b80d8
and better control the abstraction. Rename the type
to MVT. To update out-of-tree patches, the main
thing to do is to rename MVT::ValueType to MVT, and
rewrite expressions like MVT::getSizeInBits(VT) in
the form VT.getSizeInBits(). Use VT.getSimpleVT()
to extract a MVT::SimpleValueType for use in switch
statements (you will get an assert failure if VT is
an extended value type - these shouldn't exist after
type legalization).
This results in a small speedup of codegen and no
new testsuite failures (x86-64 linux).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52044 91177308-0d34-0410-b5e6-96231b3b80d8
Rename SDOperandImpl back to SDOperand.
Introduce the SDUse class that represents a use of the SDNode referred by
an SDOperand. Now it is more similar to Use/Value classes.
Patch is approved by Dan Gohman.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49795 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM Value/Use does and MachineRegisterInfo/MachineOperand does.
This allows constant time for all uses list maintenance operations.
The idea was suggested by Chris. Reviewed by Evan and Dan.
Patch is tested and approved by Dan.
On normal use-cases compilation speed is not affected. On very big basic
blocks there are compilation speedups in the range of 15-20% or even better.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48822 91177308-0d34-0410-b5e6-96231b3b80d8