Commit Graph

223 Commits

Author SHA1 Message Date
Renato Golin
ff01f89466 Reverting VLD1/VST1 base-updating/post-incrementing combining
This reverts patches 223862, 224198, 224203, and 224754, which were all
related to the vector load/store combining and were reverted/reaplied
a few times due to the same alignment problems we're seeing now.

Further tests, mainly self-hosting Clang, will be needed to reapply this
patch in the future.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228129 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-04 10:11:59 +00:00
Michael Kuperstein
0906c8fc1c [X86] Reduce some 32-bit imuls into lea + shl
Reduce integer multiplication by a constant of the form k*2^c, where k is in {3,5,9} into a lea + shl. Previously it was only done for imulq on 64-bit platforms, but it makes sense for imull and 32-bit as well.

Differential Revision: http://reviews.llvm.org/D7196

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227308 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-28 14:08:22 +00:00
Duncan P. N. Exon Smith
1ef70ff39b IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-15 19:07:53 +00:00
Ahmed Bougacha
780a093afb Reapply "[ARM] Combine base-updating/post-incrementing vector load/stores."
r223862 tried to also combine base-updating load/stores.
r224198 reverted it, as "it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown."
Reapply, with a fix to ignore non-normal load/stores.
Truncstores are handled elsewhere (you can actually write a pattern for
those, whereas for postinc loads you can't, since they return two values),
but it should be possible to also combine extloads base updates, by checking
that the memory (rather than result) type is of the same size as the addend.

Original commit message:
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.

We can do the same thing for generic load/stores.

Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).

Differential Revision: http://reviews.llvm.org/D6585


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224203 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-13 23:22:12 +00:00
Renato Golin
1e173b7139 Revert "[ARM] Combine base-updating/post-incrementing vector load/stores."
This reverts commit r223862, as it created a regression on the test-suite
on test MultiSource/Benchmarks/Ptrdist/anagram by scrambling the order
in which the words are shown. We'll investigate the issue and re-apply
when safe.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224198 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-13 20:23:18 +00:00
Ahmed Bougacha
605c40341b [ARM] Combine base-updating/post-incrementing vector load/stores.
We used to only combine intrinsics, and turn them into VLD1_UPD/VST1_UPD
when the base pointer is incremented after the load/store.

We can do the same thing for generic load/stores.

Note that we can only combine the first load/store+adds pair in
a sequence (as might be generated for a v16f32 load for instance),
because other combines turn the base pointer addition chain (each
computing the address of the next load, from the address of the last
load) into independent additions (common base pointer + this load's
offset).

Differential Revision: http://reviews.llvm.org/D6585


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223862 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-10 00:07:37 +00:00
Duncan P. N. Exon Smith
83902832de Revert "Revert "DI: Fold constant arguments into a single MDString""
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash.  The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).

Original commit message follows.

--

This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 20:01:09 +00:00
Duncan P. N. Exon Smith
32e192aeb3 Revert "DI: Fold constant arguments into a single MDString"
This reverts commit r218914 while I investigate some bots.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218918 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 22:15:31 +00:00
Duncan P. N. Exon Smith
0917b70630 DI: Fold constant arguments into a single MDString
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 21:56:57 +00:00
Adrian Prantl
02474a32eb Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:55:02 +00:00
Adrian Prantl
10c4265675 Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218782 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:10:54 +00:00
Adrian Prantl
076fd5dfc1 Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 17:55:39 +00:00
Alp Toker
8aeca44558 Reduce verbiage of lit.local.cfg files
We can just split targets_to_build in one place and make it immutable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210496 91177308-0d34-0410-b5e6-96231b3b80d8
2014-06-09 22:42:55 +00:00
Tim Northover
d0dbe02fd2 ARM & AArch64: make use of common cmpxchg idioms after expansion
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.

When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.

This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.

I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.

rdar://problem/16227836

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209883 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-30 10:09:59 +00:00
Tim Northover
29f94c7201 AArch64/ARM64: move ARM64 into AArch64's place
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.

"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.

This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-24 12:50:23 +00:00
Adam Nemet
3aa9b4911c [LSR] Add llc testcase for r207271/r207569.
See PR19608 for the details but to summarize it was easy to modify the .ll
file to get the desired def-use ordering.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207887 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-02 23:49:01 +00:00
Chandler Carruth
af09fb613f Revert r207271 for now. This commit introduced a test case that ran
clang directly from the LLVM test suite! That doesn't work. I've
followed up on the review thread to try and get a viable solution sorted
out, but trying to get the tree clean here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207462 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-28 23:07:49 +00:00
Adam Nemet
d761cc1dfa [LoopStrengthReduce] Don't trim formula that uses a subset of required registers
Consider this use from the new testcase:

  LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i32
    reg({1000,+,-1}<nw><%for.body>)
    -3003 + reg({3,+,3}<nw><%for.body>)
    -1001 + reg({1,+,1}<nuw><nsw><%for.body>)
    -1000 + reg({0,+,1}<nw><%for.body>)
    -3000 + reg({0,+,3}<nuw><%for.body>)
    reg({-1000,+,1}<nw><%for.body>)
    reg({-3000,+,3}<nsw><%for.body>)

This is the last use we consider for a solution in SolveRecurse, so CurRegs is
a large set.  (CurRegs is the set of registers that are needed by the
previously visited uses in the in-progress solution.)

ReqRegs is {
  {3,+,3}<nw><%for.body>,
  {1,+,1}<nuw><nsw><%for.body>
}

This is the intersection of the regs used by any of the formulas for the
current use and CurRegs.

Now, the code requires a formula to contain *all* these regs (the comment is
simply wrong), otherwise the formula is immediately disqualified.  Obviously,
no formula for this use contains two regs so they will all get disqualified.

The fix modifies the check to allow the formula in this case.  The idea is
that neither of these formulae is introducing any new registers which is the
point of this early pruning as far as I understand.

In terms of set arithmetic, we now allow formulas whose used regs are a subset
of the required regs not just the other way around.

There are few more loops in the test-suite that are now successfully LSRed.  I
have benchmarked those and found very minimal change.

Fixes <rdar://problem/13965777>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207271 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-25 21:02:21 +00:00
Matt Arsenault
0e92fe9dce Convert test to FileCheck
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207015 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-23 19:32:37 +00:00
Hal Finkel
24517d023f Add the ability to use GEPs for address sinking in CGP
The current memory-instruction optimization logic in CGP, which sinks parts of
the address computation that can be adsorbed by the addressing mode, does this
by explicitly converting the relevant part of the address computation into
IR-level integer operations (making use of ptrtoint and inttoptr). For most
targets this is currently not a problem, but for targets wishing to make use of
IR-level aliasing analysis during CodeGen, the use of ptrtoint/inttoptr is a
problem for two reasons:
  1. BasicAA becomes less powerful in the face of the ptrtoint/inttoptr
  2. In cases where type-punning was used, and BasicAA was used
     to override TBAA, BasicAA may no longer do so. (this had forced us to disable
     all use of TBAA in CodeGen; something which we can now enable again)

This (use of GEPs instead of ptrtoint/inttoptr) is not currently enabled by
default (except for those targets that use AA during CodeGen), and so aside
from some PowerPC subtargets and SystemZ, there should be no change in
behavior. We may be able to switch completely away from the ptrtoint/inttoptr
sinking on all targets, but further testing is required.

I've doubled-up on a number of existing tests that are sensitive to the
address sinking behavior (including some store-merging tests that are
sensitive to the order of the resulting ADD operations at the SDAG level).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206092 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-12 00:59:48 +00:00
Saleem Abdulrasool
2abadea537 ARM: yet another round of ARM test clean ups
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205586 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-03 23:47:24 +00:00
NAKAMURA Takumi
5c153c0961 llvm/test/Transforms/LoopStrengthReduce/ARM64/lsr-*.ll: Add explicit triple arm64-unknown for targeting pecoff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205125 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-30 05:01:04 +00:00
Tim Northover
7b837d8c75 ARM64: initial backend import
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.

Everything will be easier with the target in-tree though, hence this
commit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 10:18:08 +00:00
Rafael Espindola
eb8eef0b3f This test need the X86 backend, move it to the X86 sub directory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203725 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-12 22:03:43 +00:00
Michael Zolotukhin
4a0593ccd3 PR17473:
Don't normalize an expression during postinc transformation unless it's
invertible.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203719 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-12 21:31:05 +00:00
Andrew Trick
401d35bedb Fix PR18165: LSR must avoid scaling factors that exceed the limit on truncated use.
Patch by Michael Zolotukhin!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202273 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-26 16:31:56 +00:00
Arnold Schwaighofer
2ced33808e SCEVExpander: Try hard not to create derived induction variables in other loops
During LSR of one loop we can run into a situation where we have to expand the
start of a recurrence of a loop induction variable in this loop. This start
value is a value derived of the induction variable of a preceeding loop. SCEV
has cannonicalized this value to a different recurrence than the recurrence of
the preceeding loop's induction variable (the type and/or step direction) has
changed). When we come to instantiate this SCEV we created a second induction
variable in this preceeding loop.  This patch tries to base such derived
induction variables of the preceeding loop's induction variable.

This helps twolf on arm and seems to help scimark2 on x86.

Reapply with a fix for the case of a value derived from a pointer.

radar://15970709

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201496 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-16 15:49:50 +00:00
Arnold Schwaighofer
a9db46bf3e Revert "SCEVExpander: Try hard not to create derived induction variables in other loops"
This reverts commit r201465. It broke an arm bot.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201466 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-15 18:16:56 +00:00
Arnold Schwaighofer
e672548602 SCEVExpander: Try hard not to create derived induction variables in other loops
During LSR of one loop we can run into a situation where we have to expand the
start of a recurrence of a loop induction variable in this loop. This start
value is a value derived of the induction variable of a preceeding loop. SCEV
has cannonicalized this value to a different recurrence than the recurrence of
the preceeding loop's induction variable (the type and/or step direction) has
changed). When we come to instantiate this SCEV we created a second induction
variable in this preceeding loop.  This patch tries to base such derived
induction variables of the preceeding loop's induction variable.

This helps twolf on arm and seems to help scimark2 on x86.

radar://15970709

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201465 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-15 17:11:56 +00:00
Benjamin Kramer
ccdb9c9483 Fix broken CHECK lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199016 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-11 21:06:00 +00:00
Alp Toker
18a988e3a7 Fix "existant" typos
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193579 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-29 02:35:28 +00:00
Andrew Trick
4d4bbaf997 Fix SCEVExpander: don't try to expand quadratic recurrences outside a loop.
Partial fix for PR17459: wrong code at -O3 on x86_64-linux-gnu
(affecting trunk and 3.3)

When SCEV expands a recurrence outside of a loop it attempts to scale
by the stride of the recurrence. Chained recurrences don't work that
way. We could compute binomial coefficients, but would hve to
guarantee that the chained AddRec's are in a perfectly reduced form.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193438 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-25 21:35:56 +00:00
Andrew Trick
8aa8cea3e9 Fix LSR: don't normalize quadratic recurrences.
Partial fix for PR17459: wrong code at -O3 on x86_64-linux-gnu
(affecting trunk and 3.3)

ScalarEvolutionNormalization was attempting to normalize by adding and
subtracting strides. Chained recurrences don't work that way.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193437 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-25 21:35:52 +00:00
Benjamin Kramer
341562b9fb SCEVExpander: Fix a regression I introduced by to eagerly adding RAII objects.
PR17425.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191741 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-01 12:17:11 +00:00
Matt Arsenault
11250c1194 Teach loop-idiom about address space pointer sizes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190491 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-11 05:09:42 +00:00
Daniel Dunbar
24ec2e5a72 [tests] Cleanup initialization of test suffixes.
- Instead of setting the suffixes in a bunch of places, just set one master
   list in the top-level config. We now only modify the suffix list in a few
   suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).

 - Aside from removing the need for a bunch of lit.local.cfg files, this enables
   4 tests that were inadvertently being skipped (one in
   Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
   CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
   XFAILED).

 - This commit also fixes a bunch of config files to use config.root instead of
   older copy-pasted code.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188513 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-16 00:37:11 +00:00
Andrew Trick
6ea2b9608a Allocate local registers in order for optimal coloring.
Also avoid locals evicting locals just because they want a cheaper register.

Problem: MI Sched knows exactly how many registers we have and assumes
they can be colored. In cases where we have large blocks, usually from
unrolled loops, greedy coloring fails. This is a source of
"regressions" from the MI Scheduler on x86. I noticed this issue on
x86 where we have long chains of two-address defs in the same live
range. It's easy to see this in matrix multiplication benchmarks like
IRSmk and even the unit test misched-matmul.ll.

A fundamental difference between the LLVM register allocator and
conventional graph coloring is that in our model a live range can't
discover its neighbors, it can only verify its neighbors. That's why
we initially went for greedy coloring and added eviction to deal with
the hard cases. However, for singly defined and two-address live
ranges, we can optimally color without visiting neighbors simply by
processing the live ranges in instruction order.

Other beneficial side effects:

It is much easier to understand and debug regalloc for large blocks
when the live ranges are allocated in order. Yes, global allocation is
still very confusing, but it's nice to be able to comprehend what
happened locally.

Heuristics could be added to bias register assignment based on
instruction locality (think late register pairing, banks...).

Intuituvely this will make some test cases that are on the threshold
of register pressure more stable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187139 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-25 18:35:14 +00:00
Stephen Lin
15bfd6d3ad Catch more CHECK that can be converted to CHECK-LABEL in Transforms for easier debugging. No functionality change.
This conversion was done with the following bash script:

  find test/Transforms -name "*.ll" | \
  while read NAME; do
    echo "$NAME"
    if ! grep -q "^; *RUN: *llc" $NAME; then
      TEMP=`mktemp -t temp`
      cp $NAME $TEMP
      sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
      while read FUNC; do
        sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)define\([^@]*\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3define\4@$FUNC(/g" $TEMP
      done
      mv $TEMP $NAME
    fi
  done


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186269 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-14 01:50:49 +00:00
Stephen Lin
39f4e8d9cc Update Transforms tests to use CHECK-LABEL for easier debugging. No functionality change.
This update was done with the following bash script:

  find test/Transforms -name "*.ll" | \
  while read NAME; do
    echo "$NAME"
    if ! grep -q "^; *RUN: *llc" $NAME; then
      TEMP=`mktemp -t temp`
      cp $NAME $TEMP
      sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
      while read FUNC; do
        sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
      done
      mv $TEMP $NAME
    fi
  done


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186268 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-14 01:42:54 +00:00
Quentin Colombet
5a2fb058d3 LSR: Fix the parameters used to compute the scaling factor cost.
Prior to this change, the considered addressing modes may be invalid since the
maximum and minimum offsets were not taking into account.
This was causing an assertion failure.

The added test case exercices that behavior.

<rdar://problem/14199725> Assertion failed: (CurScaleCost >= 0 && "Legal
addressing mode has an illegal cost!")


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184341 91177308-0d34-0410-b5e6-96231b3b80d8
2013-06-19 19:59:41 +00:00
Quentin Colombet
5b00f4edcb Modify how the formulae are rated in Loop Strength Reduce.
Namely, check if the target allows to fold more that one register in the
addressing mode and if yes, adjust the cost accordingly.

Prior to this commit, reg1 + scale * reg2 accesses were artificially preferred
to reg1 + reg2 accesses. Indeed, the cost model wrongly assumed that reg1 + reg2
needs a temporary register for the computation, whereas it was correctly
estimated for reg1 + scale * reg2.

<rdar://problem/13973908>


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183021 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-31 17:20:29 +00:00
Andrew Trick
dd0fb018a7 Track IR ordering of SelectionDAG nodes 3/4.
Remove the old IR ordering mechanism and switch to new one.  Fix unit
test failures.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182704 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-25 03:08:10 +00:00
Manman Ren
436849be6a TBAA: remove !tbaa from testing cases if not used.
This will make it easier to turn on struct-path aware TBAA since the metadata
format will change.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180935 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-02 18:11:35 +00:00
Manman Ren
2dc50d3067 TBAA: remove !tbaa from testing cases if not used.
This will make it easier to turn on struct-path aware TBAA since the metadata
format will change.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180796 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-30 17:52:57 +00:00
Andrew Trick
6050edfe3e LSR IVChain improvement.
Handle chains in which the same offset is used for both loads and
stores to the same array.

Fixes rdar://11410078.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174789 91177308-0d34-0410-b5e6-96231b3b80d8
2013-02-09 01:11:01 +00:00
Andrew Trick
ea0e78af6d Remove target triple from an LSR test.
Manish already fixed this test to work with NoTTI.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173110 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-22 00:57:16 +00:00
Benjamin Kramer
2ce6eeb8ff Remove triple from this test, it makes it fail when X86 TTI is missing.
Without a triple opt falls back to NoTTI which comes closer to LSR's pre-TTI behavior.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172609 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-16 13:19:59 +00:00
Renato Golin
08bcd5bc4d Pattern-matched variables in post-inc-icmpzero.ll
Test was failing for clang-native-arm-cortex-a9 build-bot configuration.
The reason for the failure was the test was using hardcoded names.
The attached patch fixes this failure by replacing the hard-coded variables
names with pattern-matched variable names.

Patch by Manish Verma, ARM

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172534 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-15 15:22:45 +00:00
Andrew Trick
1ba5769676 SCEVExpander fix. RAUW needs to update the InsertedExpressions cache.
Note that this bug is only exposed because LTO fails to use TTI.

Fixes self-LTO of clang. rdar://13007381.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172462 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-14 21:00:37 +00:00
Chandler Carruth
e4ba75f43e Switch the SCEV expander and LoopStrengthReduce to use
TargetTransformInfo rather than TargetLowering, removing one of the
primary instances of the layering violation of Transforms depending
directly on Target.

This is a really big deal because LSR used to be a "special" pass that
could only be tested fully using llc and by looking at the full output
of it. It also couldn't run with any other loop passes because it had to
be created by the backend. No longer is this true. LSR is now just
a normal pass and we should probably lift the creation of LSR out of
lib/CodeGen/Passes.cpp and into the PassManagerBuilder. =] I've not done
this, or updated all of the tests to use opt and a triple, because
I suspect someone more familiar with LSR would do a better job. This
change should be essentially without functional impact for normal
compilations, and only change behvaior of targetless compilations.

The conversion required changing all of the LSR code to refer to the TTI
interfaces, which fortunately are very similar to TargetLowering's
interfaces. However, it also allowed us to *always* expect to have some
implementation around. I've pushed that simplification through the pass,
and leveraged it to simplify code somewhat. It required some test
updates for one of two things: either we used to skip some checks
altogether but now we get the default "no" answer for them, or we used
to have no information about the target and now we do have some.

I've also started the process of removing AddrMode, as the TTI interface
doesn't use it any longer. In some cases this simplifies code, and in
others it adds some complexity, but I think it's not a bad tradeoff even
there. Subsequent patches will try to clean this up even further and use
other (more appropriate) abstractions.

Yet again, almost all of the formatting changes brought to you by
clang-format. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171735 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 14:41:08 +00:00