need to make a deep copy of each of the std::maps. Use a std::map of the
std::map instead. This improves the compile time of sqlite3 by ~2%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148003 91177308-0d34-0410-b5e6-96231b3b80d8
same pattern. We already had this pattern is a few places, but others
tried to make a rough approximation of an actual DAG structure. As not
everywhere went to this trouble, nothing could rely on this being done.
In fact, I've checked all references to these node Ids, and the ones
that are using the topo-sort properties are actually satisfied with
a strict-weak-ordering. The requirement appears to be that Use >= Def.
I've added a big blurb of comments to this bit of the transform to
clarify why the order is so important for the next reader of the code.
I'm starting with this change as it is very small, and trivially
reverted if something breaks or the >= above really does need to be >.
If that proves the case, we can hide the problem by reverting this
patch, but the problem exists elsewhere as well, and so a more
comprehensive solution will be needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148001 91177308-0d34-0410-b5e6-96231b3b80d8
Previously let the JITEmitter do it. That's rather odd, and doesn't play nice
with the MCJIT, so move the (trivial) logic up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147967 91177308-0d34-0410-b5e6-96231b3b80d8
When we load the v12i32 type, the GenWidenVectorLoads method generates two loads: v8i32 and v4i32
and attempts to use CONCAT_VECTORS to join them. In this fix I concat undef values to widen
the smaller value. The test "widen_load-2.ll" also exposes this bug on AVX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147964 91177308-0d34-0410-b5e6-96231b3b80d8
This uses TLS slot 90, which actually belongs to JavaScriptCore. We only support
frames with static size
Patch by Brian Anderson.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147960 91177308-0d34-0410-b5e6-96231b3b80d8
hoped this would revive one of the llvm-gcc selfhost build bots, but it
didn't so it doesn't appear that my transform is the culprit.
If anyone else is seeing failures, please let me know!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147957 91177308-0d34-0410-b5e6-96231b3b80d8
directives was in the wrong place and getting triggered incorectly with a
cpp .file directive. This change fixes that and adds a test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147951 91177308-0d34-0410-b5e6-96231b3b80d8
strange build bot failures that look like a miscompile into an infloop.
I'll investigate this tomorrow, but I'd both like to know whether my
patch is the culprit, and get the bots back to green.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147945 91177308-0d34-0410-b5e6-96231b3b80d8
factor the differences that were hiding in one of them into its other
caller, the SRL handling code. No change in behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147940 91177308-0d34-0410-b5e6-96231b3b80d8
mask+shift pairs at the beginning of the ISD::AND case block, and then
hoist the final pattern into a helper function, simplifying and
reflowing it appropriately. This should have no observable behavior
change, but several simplifications fell out of this such as directly
computing the new mask constant, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147939 91177308-0d34-0410-b5e6-96231b3b80d8
extracts and scaled addressing modes into its own helper function. No
functionality changed here, just hoisting and layout fixes falling out
of that hoisting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147937 91177308-0d34-0410-b5e6-96231b3b80d8
detect a pattern which can be implemented with a small 'shl' embedded in
the addressing mode scale. This happens in real code as follows:
unsigned x = my_accelerator_table[input >> 11];
Here we have some lookup table that we look into using the high bits of
'input'. Each entity in the table is 4-bytes, which means this
implicitly gets turned into (once lowered out of a GEP):
*(unsigned*)((char*)my_accelerator_table + ((input >> 11) << 2));
The shift right followed by a shift left is canonicalized to a smaller
shift right and masking off the low bits. That hides the shift right
which x86 has an addressing mode designed to support. We now detect
masks of this form, and produce the longer shift right followed by the
proper addressing mode. In addition to saving a (rather large)
instruction, this also reduces stalls in Intel chips on benchmarks I've
measured.
In order for all of this to work, one part of the DAG needs to be
canonicalized *still further* than it currently is. This involves
removing pointless 'trunc' nodes between a zextload and a zext. Without
that, we end up generating spurious masks and hiding the pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147936 91177308-0d34-0410-b5e6-96231b3b80d8
1. Size heuristics changed. Now we calculate number of unswitching
branches only once per loop.
2. Some checks was moved from UnswitchIfProfitable to
processCurrentLoop, since it is not changed during processCurrentLoop
iteration. It allows decide to skip some loops at an early stage.
Extended statistics:
- Added total number of instructions analyzed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147935 91177308-0d34-0410-b5e6-96231b3b80d8
Allow LDRD to be formed from pairs with different LDR encodings. This was the original intention of the pass. Somewhere along the way, the LDR opcodes were refined which broke the optimization. We really don't care what the original opcodes are as long as they both map to the same LDRD and the immediate still fits.
Fixes rdar://10435045 ARMLoadStoreOptimization cannot handle mixed LDRi8/LDRi12
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147922 91177308-0d34-0410-b5e6-96231b3b80d8
Consider this code:
int h() {
int x;
try {
x = f();
g();
} catch (...) {
return x+1;
}
return x;
}
The variable x is undefined on the first edge to the landing pad, but it
has the f() return value on the second edge to the landing pad.
SplitAnalysis::getLastSplitPoint() would assume that the return value
from f() was live into the landing pad when f() throws, which is of
course impossible.
Detect these cases, and treat them as if the landing pad wasn't there.
This allows spill code to be inserted after the function call to f().
<rdar://problem/10664933>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147912 91177308-0d34-0410-b5e6-96231b3b80d8
Delete the alternative implementation in LiveIntervalAnalysis.
These functions computed the same thing, but SplitAnalysis caches the
result.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147911 91177308-0d34-0410-b5e6-96231b3b80d8
with other symbols.
An object in the __cfstring section is suppoed to be filled with CFString
objects, which have a pointer to ___CFConstantStringClassReference followed by a
pointer to a __cstring. If we allow the object in the __cstring section to be
merged with another global, then it could end up in any section. Because the
linker is going to remove these symbols in the final executable, we shouldn't
bother to merge them.
<rdar://problem/10564621>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147899 91177308-0d34-0410-b5e6-96231b3b80d8