This reverts commit cbfa1ca993363ca5c4dbf6c913abc957c584cbac.
We are seeing a stage2 and stage3 miscompare on some dragonegg bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184690 91177308-0d34-0410-b5e6-96231b3b80d8
We now no longer need alias analysis - the cases that alias analysis would
handle are now handled as accesses with a large dependence distance.
We can now vectorize loops with simple constant dependence distances.
for (i = 8; i < 256; ++i) {
a[i] = a[i+4] * a[i+8];
}
for (i = 8; i < 256; ++i) {
a[i] = a[i-4] * a[i-8];
}
We would be able to vectorize about 200 more loops (in many cases the cost model
instructs us no to) in the test suite now. Results on x86-64 are a wash.
I have seen one degradation in ammp. Interestingly, the function in which we
now vectorize a loop is never executed so we probably see some instruction
cache effects. There is a 2% improvement in h264ref. There is one or the other
TSCV loop kernel that speeds up.
radar://13681598
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184685 91177308-0d34-0410-b5e6-96231b3b80d8
This class checks dependences by subtracting two Scalar Evolution access
functions allowing us to catch very simple linear dependences.
The checker assumes source order in determining whether vectorization is safe.
We currently don't reorder accesses.
Positive true dependencies need to be a multiple of VF otherwise we impede
store-load forwarding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184684 91177308-0d34-0410-b5e6-96231b3b80d8
Sets of dependent accesses are built by unioning sets based on underlying
objects. This class will be used by the upcoming dependence checker.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184683 91177308-0d34-0410-b5e6-96231b3b80d8
Untill now we detected the vectorizable tree and evaluated the cost of the
entire tree. With this patch we can decide to trim-out branches of the tree
that are not profitable to vectorizer.
Also, increase the max depth from 6 to 12. In the worse possible case where all
of the code is made of diamond-shaped graph this can bring the cost to 2**10,
but diamonds are not very common.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184681 91177308-0d34-0410-b5e6-96231b3b80d8
The RAII builder location guard is saving a reference to instructions, so we can't erase instructions during vectorization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184671 91177308-0d34-0410-b5e6-96231b3b80d8
Rewrote the SLP-vectorization as a whole-function vectorization pass. It is now able to vectorize chains across multiple basic blocks.
It still does not vectorize PHIs, but this should be easy to do now that we scan the entire function.
I removed the support for extracting values from trees.
We are now able to vectorize more programs, but there are some serious regressions in many workloads (such as flops-6 and mandel-2).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184647 91177308-0d34-0410-b5e6-96231b3b80d8
This is apart of a series of patches to encapsulate PtrState.RRI and
make PtrState.RRI a private field of PtrState.
*NOTE* This is actually the second commit in the patch stream. I should
have put this note on the first such commit r184528.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184532 91177308-0d34-0410-b5e6-96231b3b80d8
This commit completely removes what is left of the simplify-libcalls
pass. All of the functionality has now been migrated to the instcombine
and functionattrs passes. The following C API functions are now NOPs:
1. LLVMAddSimplifyLibCallsPass
2. LLVMPassManagerBuilderSetDisableSimplifyLibCalls
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184459 91177308-0d34-0410-b5e6-96231b3b80d8
We collect gather sequences when we vectorize basic blocks. Gather sequences are excellent
hints for vectorization of other basic blocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184444 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to this change, the considered addressing modes may be invalid since the
maximum and minimum offsets were not taking into account.
This was causing an assertion failure.
The added test case exercices that behavior.
<rdar://problem/14199725> Assertion failed: (CurScaleCost >= 0 && "Legal
addressing mode has an illegal cost!")
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184341 91177308-0d34-0410-b5e6-96231b3b80d8
The type <3 x i8> is a common in graphics and we want to be able to vectorize it.
This changes accelerates bullet by 12% and 471_omnetpp by 5%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184317 91177308-0d34-0410-b5e6-96231b3b80d8
vectorizing loops with memory accesses to non-zero address spaces. It
simply dropped the AS info. Fixes PR16306.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184103 91177308-0d34-0410-b5e6-96231b3b80d8
This pass was assuming that if hasAddressTaken() returns false for a
function, the function's only uses are call sites. That's not true
because there can be references by BlockAddresses too.
Fix the pass to handle this case. Fix
BlockAddress::replaceUsesOfWithOnConstant() to allow a function's type
to be changed by RAUW'ing the function with a bitcast of the recreated
function.
Patch by Mark Seaborn.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183933 91177308-0d34-0410-b5e6-96231b3b80d8
Most clients have already been moved from Path V1 to V2. The ones using V1
now include PathV1.h explicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183801 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of a custom implementation of replaceAllUsesWith, we just call
replaceAllUsesWith and recreate llvm.used and llvm.compiler-used.
This change is particularity interesting because it makes llvm see
through what clang is doing with static used functions in extern "C"
contexts. With this change, running clang -O2 in
extern "C" {
__attribute__((used)) static void foo() {}
}
produces
@llvm.used = appending global [1 x i8*] [i8* bitcast (void ()* @foo to
i8*)], section "llvm.metadata"
define internal void @foo() #0 {
entry:
ret void
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183756 91177308-0d34-0410-b5e6-96231b3b80d8
Variadic functions are particularly fragile in the face of ABI changes, so this
limits how much the pass changes them
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183625 91177308-0d34-0410-b5e6-96231b3b80d8
r183584 tries to derive some info from the code *AFTER* a call and apply
these derived info to the code *BEFORE* the call, which is not always safe
as the call in question may never return, and in this case, the derived
info is invalid.
Thank Duncan for pointing out this potential bug.
rdar://14073661
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183606 91177308-0d34-0410-b5e6-96231b3b80d8
The MemCpyOpt pass is capable of optimizing:
callee(&S); copy N bytes from S to D.
into:
callee(&D);
subject to some legality constraints.
Assertion is triggered when the compiler tries to evalute "sizeof(typeof(D))",
while D is an opaque-typed, 'sret' formal argument of function being compiled.
i.e. the signature of the func being compiled is something like this:
T caller(...,%opaque* noalias nocapture sret %D, ...)
The fix is that when come across such situation, instead of calling some
utility functions to get the size of D's type (which will crash), we simply
assume D has at least N bytes as implified by the copy-instruction.
rdar://14073661
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183584 91177308-0d34-0410-b5e6-96231b3b80d8