Clang's static analyzer found several potential cases of undefined
behavior, use of un-initialized values, and potentially null pointer
dereferences in tablegen, Support, MC, and ADT. This cleans them up
with specific assertions on the assumptions of the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224154 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r222183.
Broke on the MSVC buildbots due to MSVC not producing default move
operations - I'd fix it immediately but just broke my build system a
bit, so backing out until I have a chance to get everything going again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222187 91177308-0d34-0410-b5e6-96231b3b80d8
The next step is to actually use unique_ptr in TreePatternNode's
Children vector. That will be more intrusive, and may not work,
depending on exactly how these things are handled (I have a bad
suspicion things are shared more than they should be, making this more
DAG than tree - but if it's really a tree, unique_ptr should suffice)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222183 91177308-0d34-0410-b5e6-96231b3b80d8
We might be able to use unique_ptr to handle ownership of the
TreePatternNodes too - looking into that next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221928 91177308-0d34-0410-b5e6-96231b3b80d8
The problem is mostly that variadic output instruction
aren't handled, so it is rejected for having an inconsistent
number of operands, and then the right number of operands
isn't emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221117 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful for cases when stand-alone patterns are preferred to the
patterns included in the instruction definitions. Instead of requiring
that stand-alone patterns set a larger AddedComplexity value, which
can be confusing to new developers, the allows us to reduce the
complexity of the included patterns to achieve the same result.
There will be test cases for this added to the R600 backend in a
future commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214466 91177308-0d34-0410-b5e6-96231b3b80d8
file not in the test/ area). Backing out now so that this test isn't part of
the 3.5 branch.
Original commit message: "TableGen: Allow AddedComplexity values to be negative
[...]"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213596 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful for cases when stand-alone patterns are preferred to the
patterns included in the instruction definitions. Instead of requiring
that stand-alone patterns set a larger AddedComplexity value, which
can be confusing to new developers, the allows us to reduce the
complexity of the included patterns to achieve the same result.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213521 91177308-0d34-0410-b5e6-96231b3b80d8
This changes ARM64 to use separate operands for each component of an
address, and look for separate '[', '$Rn, ..., ']' tokens when
parsing.
This allows us to do away with quite a bit of special C++ code to
handle monolithic "addressing modes" in the MC components. The more
incremental matching of the assembler operands also allows for better
diagnostics when LLVM is presented with invalid input.
Most of the complexity here is with the register-offset instructions,
which were extremely dodgy beforehand: even when the instruction used
wM, LLVM's model had xM as an operand. We papered over this
discrepancy before, but that approach doesn't work now so I split them
into separate X and W variants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209425 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the results of a ComplexPattern check to be distributed to separate
named Operands, instead of the current system where all results must apply (and
match perfectly) with a single Operand.
For example, if "some_addrmode" is a ComplexPattern producing two results, you
can write:
def : Pat<(load (some_addrmode GPR64:$base, imm:$offset)),
(INST GPR64:$base, imm:$offset)>;
This should allow neater instruction definitions in TableGen that don't put all
possible aspects of addressing into a single operand, but are still usable with
relatively simple C++ CodeGen idioms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209206 91177308-0d34-0410-b5e6-96231b3b80d8
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206822 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, it is currently impossible to use a PatFrag as part of an output
pattern (the part of the pattern that has instructions in it) in TableGen.
Looking at the current implementation, this was clearly intended to work (there
is already code in place to expand patterns in the output DAG), but is
currently broken by the baked-in type-checking assumption and the order in which
the pattern fragments are processed (output pattern fragments need to be
processed after the instruction definitions are processed).
Fixing this is fairly simple, but requires some way of differentiating output
patterns from the existing input patterns. The simplest way to handle this
seems to be to create a subclass of PatFrag, and so that's what I've done here.
As a simple example, this allows us to write:
def crnot : OutPatFrag<(ops node:$in),
(CRNOR $in, $in)>;
def : Pat<(not i1:$in),
(crnot $in)>;
which captures the core use case: handling of repeated subexpressions inside
of complicated output patterns.
This will be used by an upcoming commit to the PowerPC backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202450 91177308-0d34-0410-b5e6-96231b3b80d8
A ValueType in a pattern dag is a type cast, and GetNumNodeResults should
handle it (the type cast has only one result).
This comes up, for example, during the type checking of pattern fragments, for
example, AArch64's Neon_combine_2d fragment is:
dag Operands = (ops node:$Rm, node:$Rn);
dag Fragment = (v2f64 (concat_vectors (v1f64 node:$Rm), (v1f64 node:$Rn)));
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198347 91177308-0d34-0410-b5e6-96231b3b80d8
This syntax is now preferred:
def : Pat<(subc i32:$b, i32:$c), (SUBCCrr $b, $c)>;
There is no reason to repeat the types in the output pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177844 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it possible to define instruction patterns like this:
def LDri : F3_2<3, 0b000000,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ld [$addr], $dst",
[(set i32:$dst, (load ADDRri:$addr))]>;
~~~
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177834 91177308-0d34-0410-b5e6-96231b3b80d8
Just like register classes, value types can be used in two ways in
patterns:
(sext_inreg i32:$src, i16)
In a named leaf node like i32:$src, the value type simply provides the
type of the node directly. This simplifies type inference a lot compared
to the current practice of specifiying types indirectly with register
classes.
As an unnamed leaf node, like i16 above, the value type represents
itself as an MVT::Other immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177828 91177308-0d34-0410-b5e6-96231b3b80d8
A register class can appear as a leaf TreePatternNode with and without a
name:
(COPY_TO_REGCLASS GPR:$src, F8RC)
In a named leaf node like GPR:$src, the register class provides type
information for the named variable represented by the node. The TypeSet
for such a node is the set of value types that the register class can
represent.
In an unnamed leaf node like F8RC above, the register class represents
itself as a kind of immediate. Such a node has the type MVT::i32,
we'll never create a virtual register representing it.
This change makes it possible to remove the special handling of
COPY_TO_REGCLASS in CodeGenDAGPatterns.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177825 91177308-0d34-0410-b5e6-96231b3b80d8
of complex instruction operands (e.g. address modes).
Currently, if a Pat pattern creates an instruction that has a complex
operand (i.e. one that consists of multiple sub-operands at the MI
level), this operand must match a ComplexPattern DAG pattern with the
correct number of output operands.
This commit extends TableGen to alternatively allow match a complex
operands against multiple separate operands at the DAG level.
This allows using Pat patterns to match pre-increment nodes like
pre_store (which must have separate operands at the DAG level) onto
an instruction pattern that uses a multi-operand memory operand,
like the following example on PowerPC (will be committed as a
follow-on patch):
def STWU : DForm_1<37, (outs ptr_rc:$ea_res), (ins GPRC:$rS, memri:$dst),
"stwu $rS, $dst", LdStStoreUpd, []>,
RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
def : Pat<(pre_store GPRC:$rS, ptr_rc:$ptrreg, iaddroff:$ptroff),
(STWU GPRC:$rS, iaddroff:$ptroff, ptr_rc:$ptrreg)>;
Here, the pair of "ptroff" and "ptrreg" operands is matched onto the
complex operand "dst" of class "memri" in the "STWU" instruction.
Approved by Jakob Stoklund Olesen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177428 91177308-0d34-0410-b5e6-96231b3b80d8
This computes the type of an instruction operand or result based on the
records in the instruction's ins and outs lists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177244 91177308-0d34-0410-b5e6-96231b3b80d8
I've tried to find main moudle headers where possible, but the TableGen
stuff may warrant someone else looking at it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169251 91177308-0d34-0410-b5e6-96231b3b80d8
Most places can use PrintFatalError as the unwinding mechanism was not
used for anything other than printing the error. The single exception
was CodeGenDAGPatterns.cpp, where intermediate errors during type
resolution were ignored to simplify incremental platform development.
This use is replaced by an error flag in TreePattern and bailout earlier
in various places if it is set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166712 91177308-0d34-0410-b5e6-96231b3b80d8
Some of these dyn_cast<>'s would be better phrased as isa<> or cast<>.
That will happen in a future patch.
There are also two dyn_cast_or_null<>'s slipped in instead of
dyn_cast<>'s, since they were causing crashes with just dyn_cast<>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165646 91177308-0d34-0410-b5e6-96231b3b80d8
This is a generally useful utility; there's no reason to have it hidden
in CodeGenDAGPatterns.cpp.
Also, rename it to fit the other comparators in Record.h
Review by Jakob.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164189 91177308-0d34-0410-b5e6-96231b3b80d8
This Operand type takes a default argument, and is initialized to
this value if it does not appear in a patter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163315 91177308-0d34-0410-b5e6-96231b3b80d8
Both single-instruction and multi-instruction patterns can be checked
for missing mayLoad / mayStore, and hasSideEffects flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162734 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, instructions without a primary patterns wouldn't get their
properties inferred. Now, we use all single-instruction patterns for
inference, including 'def : Pat<>' instances.
This causes a lot of instruction flags to change.
- Many instructions no longer have the UnmodeledSideEffects flag because
their flags are now inferred from a pattern.
- Instructions with intrinsics will get a mayStore flag if they already
have UnmodeledSideEffects and a mayLoad flag if they already have
mayStore. This is because intrinsics properties are linear.
- Instructions with atomic_load patterns get a mayStore flag because
atomic loads can't be reordered. The correct workaround is to create
pseudo-instructions instead of using normal loads. PR13693.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162614 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions are now only marked as variadic if they use variable_ops in
their ins list.
A variadic SDNode is typically used for call nodes that have the call
arguments as operands.
A variadic MachineInstr can actually encode a variable number of
operands, for example ARM's stm/ldm instructions. A call instruction
does not have to be variadic. The call argument registers are added as
implicit operands.
This change remove the MCID::Variadic flags from most call and return
instructions, allowing us to better verify their operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162599 91177308-0d34-0410-b5e6-96231b3b80d8
It is now allowed to explicitly set hasSideEffects, mayStore, and
mayLoad on instructions with patterns.
Verify that the patterns are consistent with the explicit flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162569 91177308-0d34-0410-b5e6-96231b3b80d8