There have been a few times where I've wanted this but ended up leaving the
operand type unconstrained. It is easy to add this now and should help
catch errors in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78849 91177308-0d34-0410-b5e6-96231b3b80d8
pair instead of from a virtual method on TargetMachine. This cuts the final
ties of TargetAsmInfo to TargetMachine, meaning that MC can now use
TargetAsmInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78802 91177308-0d34-0410-b5e6-96231b3b80d8
the darwin version string. This should help consolidate
the variety of weird functions we have scattered around the
codebase that do stuff like this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78792 91177308-0d34-0410-b5e6-96231b3b80d8
- Used to mark fake instructions which don't correspond to an actual machine
instruction (or are duplicates of a real instruction). This is to be used for
"special cases" in the .td files, which should be ignored by things like the
assembler and disassembler. We still need a good solution to handle pervasive
duplication, like with the Int_ instructions.
- Set the bit on fake "mov 0" style instructions, which allows turning an
assembler matcher warning into a hard error.
- -2 FIXMEs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78731 91177308-0d34-0410-b5e6-96231b3b80d8
version. This allows TAI implementations to specify the directive to use
based on the mode being codegen'd for.
The real fix for this is to remove JumpTableDirective, but I don't feel
like diving into the jumptable snarl just now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78709 91177308-0d34-0410-b5e6-96231b3b80d8
The register scavenger maintains a DistanceMap that maps MI pointers to their
distance from the top of the current MBB. The DistanceMap is built
incrementally in forward() and in bulk in findFirstUse(). It is used by
scavengeRegister() to determine which candidate register has the longest
unused interval.
Unfortunately the DistanceMap contents can become outdated. The first time
scavengeRegister() is called, the DistanceMap is filled to cover the MBB. If
then instructions are inserted in the MBB (as they always are following
scavengeRegister()), the recorded distances are too short. This causes bad
behaviour in the included test case where a register use /after/ the current
position is ignored because findFirstUse() thinks is is /before/ the current
position. A "using an undefined register" assertion follows promptly.
The fix is to build a fresh DistanceMap at the top of scavengeRegister(), and
discard it after use. This means that DistanceMap is no longer needed as a
RegScavenger member variable, and forward() doesn't need to update it.
The fix then discloses issue number two in the same test case: The candidate
search in scavengeRegister() finds a CSR that has been saved in the prologue,
but is currently unused. It would be both inefficient and wrong to spill such
a register in the emergency spill slot. In the present case, the emergency
slot restore is placed immediately before the normal epilogue restore, leading
to a "Redefining a live register" assertion.
Fix number two: When scavengerRegister() stumbles upon an unused register that
is overwritten later in the MBB, return that register early. It is important
to verify that the register is defined later in the MBB, otherwise it might be
an unspilled CSR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78650 91177308-0d34-0410-b5e6-96231b3b80d8
the overloaded vector types allowed floating-point or integer vector elements.
Most of these operations actually depend on the element type, so bitcasting
was not an option.
If you include the vpadd intrinsics that I updated earlier, this gets rid
of 20 intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78646 91177308-0d34-0410-b5e6-96231b3b80d8
and short. Well, it's kinda short. Definitely nasty and brutish.
The front-end generates the register/unregister calls into the SjLj runtime,
call-site indices and landing pad dispatch. The back end fills in the LSDA
with the call-site information provided by the front end. Catch blocks are
not yet implemented.
Built on Darwin and verified no llvm-core "make check" regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78625 91177308-0d34-0410-b5e6-96231b3b80d8