difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
additional pipeline stall. So it's frequently better to single codegen
vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
vmla + vmla is very bad. But this isn't ideal either:
vmul
vadd
vmla
Instead, we want to expand the second vmla:
vmla
vmul
vadd
Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
faster.
Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.
A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
vmla / vmls will trigger one of the special hazards.
Work in progress, only A+B are enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120960 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to
"optimize for latency". Call instructions don't have the right latency and
this is more likely to use introduce spills.
2. Fix if-converter cost function. For ARM, it should use instruction latencies,
not # of micro-ops since multi-latency instructions is completely executed
even when the predicate is false. Also, some instruction will be "slower"
when they are predicated due to the register def becoming implicit input.
rdar://8598427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118135 91177308-0d34-0410-b5e6-96231b3b80d8
stick with a constant estimate of 90% (branch predictors are good!), but we might find that we want to provide
more nuanced estimates in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115364 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than having arbitrary cutoffs, actually try to cost model the conversion.
For now, the constants are tuned to more or less match our existing behavior, but these will be
changed to reflect realistic values as this work proceeds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114973 91177308-0d34-0410-b5e6-96231b3b80d8
take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113570 91177308-0d34-0410-b5e6-96231b3b80d8
have 4 bits per register in the operand encoding), but have undefined
behavior when the operand value is 13 or 15 (SP and PC, respectively).
The trivial coalescer in linear scan sometimes will merge a copy from
SP into a subsequent instruction which uses the copy, and if that
instruction cannot legally reference SP, we get bad code such as:
mls r0,r9,r0,sp
instead of:
mov r2, sp
mls r0, r9, r0, r2
This patch adds a new register class for use by Thumb2 that excludes
the problematic registers (SP and PC) and is used instead of GPR
for those operands which cannot legally reference PC or SP. The
trivial coalescer explicitly requires that the register class
of the destination for the COPY instruction contain the source
register for the COPY to be considered for coalescing. This prevents
errant instructions like that above.
PR7499
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109842 91177308-0d34-0410-b5e6-96231b3b80d8
a CPSR operand to them causes an assertion failure, so apparently these
instructions haven't been getting a lot of use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107147 91177308-0d34-0410-b5e6-96231b3b80d8
- This fixed a number of bugs in if-converter, tail merging, and post-allocation
scheduler. If-converter now runs branch folding / tail merging first to
maximize if-conversion opportunities.
- Also changed the t2IT instruction slightly. It now defines the ITSTATE
register which is read by instructions in the IT block.
- Added Thumb2 specific hazard recognizer to ensure the scheduler doesn't
change the instruction ordering in the IT block (since IT mask has been
finalized). It also ensures no other instructions can be scheduled between
instructions in the IT block.
This is not yet enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106344 91177308-0d34-0410-b5e6-96231b3b80d8
call must not be callee-saved; following x86, add a new
regclass to represent this. Also fixes a couple of bugs.
Still disabled by default; Thumb doesn't work yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106053 91177308-0d34-0410-b5e6-96231b3b80d8
through to the generic version. The generic functions use STR/LDR, but T2
needs the t2STR/t2LDR instead so we get the addressing mode correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99678 91177308-0d34-0410-b5e6-96231b3b80d8
immediate instructions cannot set the condition codes, so they do not have
the extra cc_out operand. We hit an assertion during tail duplication
because the instruction being duplicated had more operands that expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98001 91177308-0d34-0410-b5e6-96231b3b80d8
except it doesn't care if the definitions' virtual registers differ. This is
used by machine LICM and other MI passes to perform CSE.
- Teach Thumb2InstrInfo::isIdentical() to check two t2LDRpci_pic are identical.
Since pc relative constantpool entries are always different, this requires it
it check if the values can actually the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86328 91177308-0d34-0410-b5e6-96231b3b80d8
load of a GV from constantpool and then add pc. It allows the code sequence to
be rematerializable so it would be hoisted by machine licm.
- Add a late pass to break these pseudo instructions into a number of real
instructions. Also move the code in Thumb2 IT pass that breaks up t2MOVi32imm
to this pass. This is done before post regalloc scheduling to allow the
scheduler to proper schedule these instructions. It also allow them to be
if-converted and shrunk by later passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86304 91177308-0d34-0410-b5e6-96231b3b80d8
VLDM/VSTM instructions, and without this check, the code assumes that an
offset is allowed, as it would be with VLDR/VSTR. The asm printer,
however, silently drops the offset, producing incorrect code. Since the
address register in this case is either the stack or frame pointer, the
spill location ends up conflicting with some other stack slot or with
outgoing arguments on the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81879 91177308-0d34-0410-b5e6-96231b3b80d8
This patch takes pain to ensure all the PEI lowering code does the right thing when lowering frame indices, insert code to manipulate stack pointers, etc. It's also custom lowering dynamic stack alloc into pseudo instructions so we can insert the right instructions at scheduling time.
This fixes PR4659 and PR4682.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78361 91177308-0d34-0410-b5e6-96231b3b80d8
the only real caller (GetFunctionSizeInBytes) uses it.
The custom ARM implementation of this is basically reimplementing
an assembler poorly for negligible gain. It should be removed
IMNSHO, but I'll leave that to ARMish folks to decide.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77877 91177308-0d34-0410-b5e6-96231b3b80d8
- This change also makes it possible to switch between ARM / Thumb on a
per-function basis.
- Fixed thumb2 routine which expand reg + arbitrary immediate. It was using
using ARM so_imm logic.
- Use movw and movt to do reg + imm when profitable.
- Other code clean ups and minor optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77300 91177308-0d34-0410-b5e6-96231b3b80d8
This also fixes potential problems in ARMBaseInstrInfo routines not recognizing thumb1 instructions when 32-bit and 16-bit instructions mix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77218 91177308-0d34-0410-b5e6-96231b3b80d8