It affected callee's stack pop in x86. It is one of devergences between cygwin and mingw since mingw-gcc-4.6.
Added testcases to llvm/test/CodeGen/X86/win32_sret.ll for cygwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205688 91177308-0d34-0410-b5e6-96231b3b80d8
recoloring cut-offs are encountered and register allocation failed.
This is related to PR18747
Patch by MAYUR PANDEY <mayur.p@samsung.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205601 91177308-0d34-0410-b5e6-96231b3b80d8
opportunities in the current basic block, rather than just the last one seen.
<rdar://problem/16478629>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205481 91177308-0d34-0410-b5e6-96231b3b80d8
Identical to Win32 method except the GS segment register is used for TLS
instead of FS and pvArbitrary is at TEB offset 0x28 instead of 0x14.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205342 91177308-0d34-0410-b5e6-96231b3b80d8
This commit updates the stackmap format to version 1 to indicate the
reorganizaion of several fields. This was done in order to align stackmap
entries to their natural alignment and to minimize padding.
Fixes <rdar://problem/16005902>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205254 91177308-0d34-0410-b5e6-96231b3b80d8
Emit 32-bit register names instead of 64-bit register names if the target does
not have 64-bit general purpose registers.
<rdar://problem/14653996>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205067 91177308-0d34-0410-b5e6-96231b3b80d8
WinCOFF cannot form PC relative relocations to support absolute
MCValues. We should reenable this once WinCOFF supports emission of
IMAGE_REL_I386_REL32 relocations.
This fixes PR19272.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205058 91177308-0d34-0410-b5e6-96231b3b80d8
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204934 91177308-0d34-0410-b5e6-96231b3b80d8
In some cases it is possible for CGP to attempt to reuse a base address from
another basic block. In those cases we have to be sure that all the address
math was either done at the same bit width, or that none of it overflowed
before it was extended.
Patch by Louis Gerbarg <lgg@apple.com>
rdar://16307442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204833 91177308-0d34-0410-b5e6-96231b3b80d8
> For functions where esi is used as base pointer, we would previously fall ba
> from lowering memcpy with "rep movs" because that clobbers esi.
>
> With this patch, we just store esi in another physical register, and restore
> it afterwards. This adds a little bit of register preassure, but the more
> efficient memcpy should be worth it.
>
> Differential Revision: http://llvm-reviews.chandlerc.com/D2968
This didn't work. I was ending up with code like this:
lea edi,[esi+38h]
mov ecx,0Fh
mov edx,esi
mov esi,ebx
rep movs dword ptr es:[edi],dword ptr [esi]
lea ecx,[esi+74h] <-- Ooops, we're now using esi before restoring it from edx.
add ebx,3Ch
mov esi,edx
I guess if we want to do this we need stronger glue or something, or doing the expansion
much later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204829 91177308-0d34-0410-b5e6-96231b3b80d8
Implementing the LLVM part of the call to __builtin___clear_cache
which translates into an intrinsic @llvm.clear_cache and is lowered
by each target, either to a call to __clear_cache or nothing at all
incase the caches are unified.
Updating LangRef and adding some tests for the implemented architectures.
Other archs will have to implement the method in case this builtin
has to be compiled for it, since the default behaviour is to bail
unimplemented.
A Clang patch is required for the builtin to be lowered into the
llvm intrinsic. This will be done next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204802 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r204781.
I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204784 91177308-0d34-0410-b5e6-96231b3b80d8
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204781 91177308-0d34-0410-b5e6-96231b3b80d8
Adds the different broadcast instructions to the ReplaceableInstrsAVX2 table.
That way the ExeDepsFix pass can take better decisions when AVX2 broadcasts are
across domain (int <-> float).
In particular, prior to this patch we were generating:
vpbroadcastd LCPI1_0(%rip), %ymm2
vpand %ymm2, %ymm0, %ymm0
vmaxps %ymm1, %ymm0, %ymm0 ## <- domain change penalty
Now, we generate the following nice sequence where everything is in the float
domain:
vbroadcastss LCPI1_0(%rip), %ymm2
vandps %ymm2, %ymm0, %ymm0
vmaxps %ymm1, %ymm0, %ymm0
<rdar://problem/16354675>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204770 91177308-0d34-0410-b5e6-96231b3b80d8
This used to resort to splitting the 256-bit operation into two 128-bit
shuffles and then recombining the results.
Fixes <rdar://problem/16167303>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204735 91177308-0d34-0410-b5e6-96231b3b80d8
This is a pretty straight forward translation for COFF, we just need to
stick the data in a COMDAT section marked as
IMAGE_COMDAT_SELECT_NODUPLICATES.
N.B. We must be careful to avoid sticking entities with private linkage
in COMDAT groups. COFF is pretty hostile to the renaming of entities so
we must be careful to disallow GlobalVariables with unstable names.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204703 91177308-0d34-0410-b5e6-96231b3b80d8
Those patterns are used when the load cannot be folded into the related broadcast
during the select phase.
This happens when the load gets additional uses that were not anticipated during
the previous lowering phases (constant vector to constant load, then constant
load reused) or when selection DAG is not able to prove that folding the load
will not create a cycle in the DAG.
<rdar://problem/16074331>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204631 91177308-0d34-0410-b5e6-96231b3b80d8
This is a pretty straight forward translation for COFF, we just need to
stick the function in a COMDAT section marked as
IMAGE_COMDAT_SELECT_NODUPLICATES.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204565 91177308-0d34-0410-b5e6-96231b3b80d8
This patch renames method 'isConstantSplat' as 'getConstantSplatValue'
(mainly for consistency reasons), and rewrites its logic to ensure
that we always perform a legal 'cast<ConstantSDNode>'.
Added test shift-combine-crash.ll to verify that DAGCombiner no longer crashes with an assertion failure in the attempt to simplify a vector shift by a vector of all undef counts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204536 91177308-0d34-0410-b5e6-96231b3b80d8
We make sure a spill is not hoisted to a hotter outer loop by adding
a condition. Hoist a spill to outer loop if there are multiple dependents
(it can be beneficial if more than one dependents are hoisted) or
if DepSV (the hoisting source) is hotter than SV (the hoisting destination).
rdar://16268194
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204522 91177308-0d34-0410-b5e6-96231b3b80d8
Extend the target hook to take also the operand index into account when
calculating the cost of the constant materialization.
Related to <rdar://problem/16381500>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204435 91177308-0d34-0410-b5e6-96231b3b80d8
This commit extends the coverage of the constant hoisting pass, adds additonal
debug output and updates the function names according to the style guide.
Related to <rdar://problem/16381500>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204389 91177308-0d34-0410-b5e6-96231b3b80d8
For functions where esi is used as base pointer, we would previously fall back
from lowering memcpy with "rep movs" because that clobbers esi.
With this patch, we just store esi in another physical register, and restore
it afterwards. This adds a little bit of register preassure, but the more
efficient memcpy should be worth it.
Differential Revision: http://llvm-reviews.chandlerc.com/D2968
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204174 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than LegalizeAction::Expand, this needs LegalizeAction::Promote to get
promoted to fp_to_sint v8f32->v8i32. This is a legal operation on AVX.
For that to work properly, we also need to teach the legalizer about the
specific promotion required here. The default vector promotion uses
bitcasting to a vector type of the same total size. We want to promote the
vector element type, effectively widening the operation and then truncating
the result. This is analogous to the current logic of how int_to_fp is
promoted.
The change also factors out some code from the int_to_fp promotion code to
ValueType::widenIntegerVectorElementType. This is now shared between
int_to_fp and fp_to_int.
There is no longer need for the custom lowering of fp_to_sint f32->v8i16 in
X86. It can now go through the new target-independent fp_to_*int promotion
logic.
I also checked that no other target uses Promote for these ops yet, so there
shouldn't be any unexpected change in behavior.
Fixes <rdar://problem/16202247>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204058 91177308-0d34-0410-b5e6-96231b3b80d8