MCJIT::getPointerForFunction adds the resulting address to the global mapping.
This should be done via updateGlobalMapping rather than addGlobalMapping, since
the latter asserts if a mapping already exists.
MCJIT::getPointerToFunction is actually deprecated - hopefully we can remove it
(or more likely re-task it) entirely soon. In the mean time it should at least
work as advertised.
<rdar://problem/18727946>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220444 91177308-0d34-0410-b5e6-96231b3b80d8
On AArch64, GOT references are page relative (ADRP + LDR), so they can't be
applied until we know exactly where, within a page, the GOT entry will be in
the target address space.
Fixes <rdar://problem/18693976>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220347 91177308-0d34-0410-b5e6-96231b3b80d8
There are two methods in SectionRef that can fail:
* getName: The index into the string table can be invalid.
* getContents: The section might point to invalid contents.
Every other method will always succeed and returning and std::error_code just
complicates the code. For example, a section can have an invalid alignment,
but if we are able to get to the section structure at all and create a
SectionRef, we will always be able to read that invalid alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219314 91177308-0d34-0410-b5e6-96231b3b80d8
member of RTDyldMemoryManager (and rename to getSymbolAddressInProcess).
The functionality this provides is very specific to RTDyldMemoryManager, so it
makes sense to keep it in that class to avoid accidental re-use.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218741 91177308-0d34-0410-b5e6-96231b3b80d8
The contract of this function seems problematic (fallback in either
direction seems like it could produce bugs in one client or another),
but here's some tests for its current behavior, at least. See the
commit/review thread of r218187 for more discussion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218626 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes the old JIT memory manager (which does not provide any
useful functionality now that the old JIT is gone), and migrates the few
remaining clients over to SectionMemoryManager.
http://llvm.org/PR20848
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218316 91177308-0d34-0410-b5e6-96231b3b80d8
This patch modifies RTDyldMemoryManager::getSymbolAddress(Name)'s behavior to
make it consistent with how clients are using it: Name should be mangled, and
getSymbolAddress should demangle it on the caller's behalf before looking the
name up in the process. This patch also fixes the one client
(MCJIT::getPointerToFunction) that had been passing unmangled names (by having
it pass mangled names instead).
Background:
RTDyldMemoryManager::getSymbolAddress(Name) has always used a re-try mechanism
when looking up symbol names in the current process. Prior to this patch
getSymbolAddress first tried to look up 'Name' exactly as the user passed it in
and then, if that failed, tried to demangle 'Name' and re-try the look up. The
implication of this behavior is that getSymbolAddress expected to be called with
unmangled names, and that handling mangled names was a fallback for convenience.
This is inconsistent with how clients (particularly the RuntimeDyldImpl
subclasses, but also MCJIT) usually use this API. Most clients pass in mangled
names, and succeed only because of the fallback case. For clients passing in
mangled names, getSymbolAddress's old behavior was actually dangerous, as it
could cause unmangled names in the process to shadow mangled names being looked
up.
For example, consider:
foo.c:
int _x = 7;
int x() { return _x; }
foo.o:
000000000000000c D __x
0000000000000000 T _x
If foo.c becomes part of the process (E.g. via dlopen("libfoo.dylib")) it will
add symbols 'x' (the function) and '_x' (the variable) to the process. However
jit clients looking for the function 'x' will be using the mangled function name
'_x' (note how function 'x' appears in foo.o). When getSymbolAddress goes
looking for '_x' it will find the variable instead, and return its address and
in place of the function, leading to JIT'd code calling the variable and
crashing (if we're lucky).
By requiring that getSymbolAddress be called with mangled names, and demangling
only when we're about to do a lookup in the process, the new behavior
implemented in this patch should eliminate any chance of names being shadowed
during lookup.
There's no good way to test this at the moment: This issue only arrises when
looking up process symbols (not JIT'd symbols). Any test case would have to
generate a platform-appropriate dylib to pass to llvm-rtdyld, and I'm not
aware of any in-tree tool for doing this in a portable way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218187 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC 2012 cannot infer any move special members, but it will call them
if available. MSVC 2013 cannot infer move assignment. Therefore,
explicitly implement the special members for the ExecutionContext class
and its contained types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217887 91177308-0d34-0410-b5e6-96231b3b80d8
More methods to follow.
Using StringRef allows us the EE interface to work with more string types
without forcing construction of std::strings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217794 91177308-0d34-0410-b5e6-96231b3b80d8
A "stub found found" diagnostic is emitted when RuntimeDyldChecker's stub lookup
logic fails to find the requested stub. The obvious reason for the failure is
that no such stub has been created, but it can also fail for internal symbols if
the symbol offset is not computed correctly (E.g. due to a mangled relocation
addend). This patch adds a comment about the latter case so that it's not
overlooked.
Inspired by confusion experienced during test case construction for r217635.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217643 91177308-0d34-0410-b5e6-96231b3b80d8
With this a DataLayoutPass can be reused for multiple modules.
Once we have doInitialization/doFinalization, it doesn't seem necessary to pass
a Module to the constructor.
Overall this change seems in line with the idea of making DataLayout a required
part of Module. With it the only way of having a DataLayout used is to add it
to the Module.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217548 91177308-0d34-0410-b5e6-96231b3b80d8
field of RelocationValueRef, rather than the 'Addend' field.
This is consistent with RuntimeDyldELF's use of RelocationValueRef, and more
consistent with the semantics of the data being stored (the offset from the
start of a section or symbol).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217328 91177308-0d34-0410-b5e6-96231b3b80d8
The finalizeObject method calls generateCodeForModule on each of the currently
'added' objects, but generateCodeForModule moves objects out of the 'added'
set as it's called. To avoid iterator invalidation issues, the added set is
copied out before any calls to generateCodeForModule.
This should fix http://llvm.org/PR20851 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217291 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes:
CMake Warning (dev) at lib/ExecutionEngine/Interpreter/CMakeLists.txt:16 (target_link_libraries):
Policy CMP0023 is not set: Plain and keyword target_link_libraries
signatures cannot be mixed. Run "cmake --help-policy CMP0023" for policy
details. Use the cmake_policy command to set the policy and suppress this
warning.
The keyword signature for target_link_libraries has already been used with
the target "LLVMInterpreter". All uses of target_link_libraries with a
target should be either all-keyword or all-plain.
The uses of the keyword signature are here:
* cmake/modules/AddLLVM.cmake:345 (target_link_libraries)
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217154 91177308-0d34-0410-b5e6-96231b3b80d8
sections.
This allows fine-grained control of the memory layout of hypothetical target
processes for testing purposes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217122 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure this is a particularly helpful API (to pass ownership and
then return it unconditionally) rather than just pass the underlying
object by non-const reference, but this was the original API so I'll
just make it more safe/stable and anyone else is free to adjust that at
their whim, of course.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217081 91177308-0d34-0410-b5e6-96231b3b80d8
JITEventListener. This used to be in the old JIT (last line of the file)
and everyone just "happened" to pick it up from there. =/ Doh.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217073 91177308-0d34-0410-b5e6-96231b3b80d8
The syntax of the new builtin is 'section_addr(<filename>, <section-name>)'
(similar to the stub_addr builtin, but without a symbol name). It returns the
base address of the given section in the given object file. This builtin makes
it possible to refer to the contents of sections that cannot contain symbols,
e.g. sections added by the linker itself, like __eh_frame.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217010 91177308-0d34-0410-b5e6-96231b3b80d8
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reinstates commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216982 91177308-0d34-0410-b5e6-96231b3b80d8
RuntimeDyldImpl.
These are platform independent, and moving them to the base class allows
RuntimeDyldChecker to use them too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216801 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Introduce support::ulittleX_t::ref type to Support/Endian.h and use it in x86 JIT
to enforce correct endianness and fix unaligned accesses.
Test Plan: regression test suite
Reviewers: lhames
Subscribers: ributzka, llvm-commits
Differential Revision: http://reviews.llvm.org/D5011
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216631 91177308-0d34-0410-b5e6-96231b3b80d8
Long term the idea if for the engine to not own the buffers, but for now
this is consistent with the rest of the API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216484 91177308-0d34-0410-b5e6-96231b3b80d8
The expressions 'Reloc.Addend - Addend' and 'Reloc.Offset' should always be
equal in this context. The latter is prefered - we want to remove the
RelocationValueRef::Addend field in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216418 91177308-0d34-0410-b5e6-96231b3b80d8
Based on the STL class of the same name, it guards a mutex
while also allowing it to be unlocked conditionally before
destruction.
This eliminates the last naked usages of mutexes in LLVM and
clang.
It also uncovered and fixed a bug in callExternalFunction()
when compiled without USE_LIBFFI, where the mutex would never
be unlocked if the end of the function was reached.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216338 91177308-0d34-0410-b5e6-96231b3b80d8
Owning the buffer is somewhat inflexible. Some Binaries have sub Binaries
(like Archive) and we had to create dummy buffers just to handle that. It is
also a bad fit for IRObjectFile where the Module wants to own the buffer too.
Keeping this ownership would make supporting IR inside native objects
particularly painful.
This patch focuses in lib/Object. If something elsewhere used to own an Binary,
now it also owns a MemoryBuffer.
This patch introduces a few new types.
* MemoryBufferRef. This is just a pair of StringRefs for the data and name.
This is to MemoryBuffer as StringRef is to std::string.
* OwningBinary. A combination of Binary and a MemoryBuffer. This is needed
for convenience functions that take a filename and return both the
buffer and the Binary using that buffer.
The C api now uses OwningBinary to avoid any change in semantics. I will start
a new thread to see if we want to change it and how.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216002 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
Cleanup only: no functional change.
This patch makes RuntimeDyldMachO targets directly responsible for decoding
immediates, rather than letting them implement catch a callback from generic
code. Since this is a very target specific operation, it makes sense to let the
target-specific code drive it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215255 91177308-0d34-0410-b5e6-96231b3b80d8
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215154 91177308-0d34-0410-b5e6-96231b3b80d8
C-style casts (and reinterpret_casts) result in implementation defined
values when a pointer is cast to a larger integer type. On some platforms
this was leading to bogus address computations in RuntimeDyldMachOAArch64.
This should fix http://llvm.org/PR20501.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215143 91177308-0d34-0410-b5e6-96231b3b80d8
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215111 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of moving out the data in a ErrorOr<std::unique_ptr<Foo>>, get
a reference to it.
Thanks to David Blaikie for the suggestion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214516 91177308-0d34-0410-b5e6-96231b3b80d8
We now (1) correctly decode the branch immediate, (2) modify the immediate to
corretly treat it as PC-rel, and (3) properly populate the stub entry.
Previously we had been doing each of these wrong.
<rdar://problem/17750739>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214285 91177308-0d34-0410-b5e6-96231b3b80d8
use in -verify mode.
This patch adds three hidden command line options to llvm-rtdyld:
-target-addr-start <start-addr> : Specify the start of the virtual address
space on the phony target.
-target-addr-end <end-addr> : Specify the end of the virtual address space
on the phony target.
-target-section-sep <sep> : Specify the separation (in bytes) between the
end of one section and the start of the next.
These options automatically default to sane values for the target platform. In
particular, they allow narrow (e.g. 32-bit, 16-bit) targets to be tested from
wider (e.g. 64-bit, 32-bit) hosts without overflowing pointers.
The section separation option defaults to zero, but can be set to a large number
(e.g. 1 << 32) to force large separations between sections in order to
stress-test large-code-model code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214255 91177308-0d34-0410-b5e6-96231b3b80d8
full paths for its first argument.
This allows us to remove the annoying sed lines in the test cases, and write
direct references to file names in stub_addr calls (rather than <filename>
placeholders).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214211 91177308-0d34-0410-b5e6-96231b3b80d8
Having both Triple::arm64 and Triple::aarch64 is extremely confusing, and
invites bugs where only one is checked. In reality, the only legitimate
difference between the two (arm64 usually means iOS) is also present in the OS
part of the triple and that's what should be checked.
We still parse the "arm64" triple, just canonicalise it to Triple::aarch64, so
there aren't any LLVM-side test changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213743 91177308-0d34-0410-b5e6-96231b3b80d8
There's no reason to restrict this particular piece of RuntimeDyldChecker
functionality to +Asserts builds.
This should fix failures in MachO_x86-64_PIC_relocations.s on release bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213708 91177308-0d34-0410-b5e6-96231b3b80d8
RuntimeDyldChecker had been testing isalpha(Expr[0]) to recognise symbol tokens,
and throwing unrecognized token errors when it hit symbols with leading
underscores. This fixes that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213706 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a 'stub_addr' builtin that can be used to find the address
of the stub for a given (<file>, <section>, <symbol>) tuple. This address can be
used both to verify the contents of stubs (by loading from the returned address)
and to verify references to stubs (by comparing against the returned address).
Example (1) - Verifying stub contents:
Load 8 bytes (assuming a 64-bit target) from the stub for 'x' in the __text
section of f.o, and compare that value against the addres of 'x'.
# rtdyld-check: *{8}(stub_addr(f.o, __text, x) = x
Example (2) - Verifying references to stubs:
Decode the immediate of the instruction at label 'l', and verify that it's
equal to the offset from the next instruction's PC to the stub for 'y' in the
__text section of f.o (i.e. it's the correct PC-rel difference).
# rtdyld-check: decode_operand(l, 4) = stub_addr(f.o, __text, y) - next_pc(l)
l:
movq y@GOTPCREL(%rip), %rax
Since stub inspection requires cooperation with RuntimeDyldImpl this patch
pimpl-ifies RuntimeDyldChecker. Its implementation is moved in to a new class,
RuntimeDyldCheckerImpl, that has access to the definition of RuntimeDyldImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213698 91177308-0d34-0410-b5e6-96231b3b80d8
Factor out the addend encoding into a helper function and simplify the
processRelocationRef.
Also add a few simple rtdyld tests. More tests to come once GOTs can be tested too.
Related to <rdar://problem/17768539>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213689 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the required functionality to decode the immediate encoded in an
instruction that is referenced in a relocation entry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213688 91177308-0d34-0410-b5e6-96231b3b80d8
In MachO for AArch64 it is possible to have an explicit addend defined by
the ARM64_RELOC_ADDEND relocation or having an addend encoded within the
instruction. Only one of them are allowed per relocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213687 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables the new ELFv2 ABI in the runtime dynamic loader.
The loader has to implement the following features:
- In the ELFv2 ABI, do not look up a function descriptor in .opd, but
instead use the local entry point when resolving a direct call.
- Update the TOC restore code to use the new TOC slot linkage area
offset.
- Create PLT stubs appropriate for the ELFv2 ABI.
Note that this patch also adds common-code changes. These are necessary
because the loader must check the newly added ELF flags: the e_flags
header bits encoding the ABI version, and the st_other symbol table
entry bits encoding the local entry point offset. There is currently
no way to access these, so I've added ObjectFile::getPlatformFlags and
SymbolRef::getOther accessors.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213491 91177308-0d34-0410-b5e6-96231b3b80d8
getBasicRelocationEntry to use this rather than 'memcpy' to get the
relocation addend. Targets with non-trivial addend encodings (E.g. AArch64) can
override decodeAddend to handle immediates with interesting encodings.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213435 91177308-0d34-0410-b5e6-96231b3b80d8
RelocationEntry.
No test case yet, as this primarily hits GOT entries, which RuntimeDyldChecker
can't examine yet. I'm actively working on features that will enable us to
test this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213408 91177308-0d34-0410-b5e6-96231b3b80d8
relaxed in the big RuntimeDyldMachO cleanup of r213293.
No test case yet - this was found via inspection and there's no easy way to test
GOT alignment in RuntimeDyldChecker at the moment. I'm working on adding support
for this now, and hope to have a test case for this soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213331 91177308-0d34-0410-b5e6-96231b3b80d8
This optional dependency on the udis86 library was added some time back to aid
JIT development, but doesn't make much sense to link into LLVM binaries these
days.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213300 91177308-0d34-0410-b5e6-96231b3b80d8
The previous implementation of RuntimeDyldMachO mixed logic for all targets
within a single class, creating problems for readability, maintainability, and
performance. To address these issues, this patch strips the RuntimeDyldMachO
class down to just target-independent functionality, and moves all
target-specific functionality into target-specific subclasses RuntimeDyldMachO.
The new class hierarchy is as follows:
class RuntimeDyldMachO
Implemented in RuntimeDyldMachO.{h,cpp}
Contains logic that is completely independent of the target. This consists
mostly of MachO helper utilities which the derived classes use to get their
work done.
template <typename Impl>
class RuntimeDyldMachOCRTPBase<Impl> : public RuntimeDyldMachO
Implemented in RuntimeDyldMachO.h
Contains generic MachO algorithms/data structures that defer to the Impl class
for target-specific behaviors.
RuntimeDyldMachOARM : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM>
RuntimeDyldMachOARM64 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM64>
RuntimeDyldMachOI386 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOI386>
RuntimeDyldMachOX86_64 : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOX86_64>
Implemented in their respective *.h files in lib/ExecutionEngine/RuntimeDyld/MachOTargets
Each of these contains the relocation logic specific to their target architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213293 91177308-0d34-0410-b5e6-96231b3b80d8
When a RuntimeDyldChecker test requests an invalid operand for an instruction,
print the decoded instruction to aid diagnosis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213202 91177308-0d34-0410-b5e6-96231b3b80d8
The registration scheme used in r211652 violated the read-only contract of
MemoryBuffer. This caused crashes in llvm-rtdyld where macho objects were backed
by read-only mmap'd memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213086 91177308-0d34-0410-b5e6-96231b3b80d8
reading MachO files magic numbers in RuntimeDyld.
This is required now that we're testing cross-platform JITing (via
RuntimeDyldChecker), and should fix some issues that David Fang has seen on PPC
builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213012 91177308-0d34-0410-b5e6-96231b3b80d8
Test cases to follow once RuntimeDyldChecker supports introspection of stubs.
Fixes <rdar://problem/17648000>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212859 91177308-0d34-0410-b5e6-96231b3b80d8
The compiler often emits assembler-local labels (beginning with 'L') for use in
relocation expressions, however these aren't included in the object files.
Teach RuntimeDyldChecker to warn the user if they try to use one of these in an
expression, since it will never work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212777 91177308-0d34-0410-b5e6-96231b3b80d8
ForceInterpreter=false shouldn't disable the interpreter completely because it
can still be necessary to interpret if the target doesn't support JIT.
No obvious way to test this in LLVM, but this matches what
LLVMCreateExecutionEngineForModule() does and fixes the clang-interpreter
example in the clang source tree which uses the ExecutionEngine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212086 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds a "-verify" mode to the llvm-rtdyld utility. In verify mode,
llvm-rtdyld will test supplied expressions against the linked program images
that it creates in memory. This scheme can be used to verify the correctness
of the relocation logic applied by RuntimeDyld.
The expressions to test will be read out of files passed via the -check option
(there may be more than one of these). Expressions to check are extracted from
lines of the form:
# rtdyld-check: <expression>
This system is designed to fit the llvm-lit regression test workflow. It is
format and target agnostic, and supports verification of images linked for
remote targets. The expression language is defined in
llvm/include/llvm/RuntimeDyldChecker.h . Examples can be found in
test/ExecutionEngine/RuntimeDyld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211956 91177308-0d34-0410-b5e6-96231b3b80d8
Current PPC64 RuntimeDyld code to handle TOC relocations has two
problems:
- With recent linkers, in addition to the relocations that implicitly
refer to the TOC base (R_PPC64_TOC*), you can now also use the .TOC.
magic symbol with any other relocation to refer to the TOC base
explicitly. This isn't currently used much in ELFv1 code (although
it could be), but it is essential in ELFv2 code.
- In a complex JIT environment with multiple modules, each module may
have its own .toc section, and TOC relocations in one module must
refer to *its own* TOC section. The current findPPC64TOC implementation
does not correctly implement this; in fact, it will always return the
address of the first TOC section it finds anywhere. (Note that at the
time findPPC64TOC is called, we don't even *know* which module the
relocation originally resided in, so it is not even possible to fix
this routine as-is.)
This commit fixes both problems by handling TOC relocations earlier, in
processRelocationRef. To do this, I've removed the findPPC64TOC routine
and replaced it by a new routine findPPC64TOCSection, which works
analogously to findOPDEntrySection in scanning the sections of the
ObjImage provided by its caller, processRelocationRef. This solves the
issue of finding the correct TOC section associated with the current
module.
This makes it straightforward to implement both R_PPC64_TOC relocations,
and relocations explicitly refering to the .TOC. symbol, directly in
processRelocationRef. There is now a new problem in implementing the
R_PPC64_TOC16* relocations, because those can now in theory involve
*three* different sections: the relocation may be applied in section A,
refer explicitly to a symbol in section B, and refer implicitly to the
TOC section C. The final processing of the relocation thus may only
happen after all three of these sections have been assigned final
addresses. There is currently no obvious means to implement this in
its general form with the common-code RuntimeDyld infrastructure.
Fortunately, ppc64 code usually makes no use of this most general form;
in fact, TOC16 relocations are only ever generated by LLVM for symbols
residing themselves in the TOC, which means "section B" == "section C"
in the above terminology. This special case can easily be handled with
the current infrastructure, and that is what this patch does.
[ Unhandled cases result in an explicit error, unlike the current code
which silently returns the wrong TOC base address ... ]
This patch makes the JIT work on both BE and LE (ELFv2 requires
additional patches, of course), and allowed me to successfully run
complex JIT scenarios (via mesa/llvmpipe).
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211885 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the buffer ownership on error conditions very natural. The buffer
is only moved out of the argument if an object is constructed that now
owns the buffer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211546 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 1f502bd9d7, due to
GCC / MinGW's lack of support for C++11 threading.
It's possible this will go back in after we come up with a
reasonable solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211401 91177308-0d34-0410-b5e6-96231b3b80d8
When RuntimeDyldELF creates stub functions, it needs to install
relocations that will resolve to the final address of the target
routine. Since those are 16-bit relocs, they need to be applied to the
least-significant halfword of the instruction. On big-endian ppc64,
this means that addresses have to be adjusted by 2, which is what the
code currently does.
However, on a little-endian system, the address must *not* be adjusted;
the least-significant halfword is the first one. This patch updates the
RuntimeDyldELF code to take the target byte order into account.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211384 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for several missing PPC64 relocations in the
straight-forward manner to RuntimeDyldELF.cpp.
Note that this actually fixes a failure of a large-model test case on
PowerPC, allowing the XFAIL to be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211382 91177308-0d34-0410-b5e6-96231b3b80d8
This change has a bit of a trickle down effect due to the fact that
there are a number of derived implementations of ExecutionEngine,
and that the mutex is not tightly encapsulated so is used by other
classes directly.
Reviewed by: rnk
Differential Revision: http://reviews.llvm.org/D4196
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211214 91177308-0d34-0410-b5e6-96231b3b80d8
This pattern loses some of its usefulness when the mutex type is
statically polymorphic as opposed to runtime polymorphic, as
swapping out the mutex type requires changing a significant number
of function parameters, and templatizing the function parameter
requires the methods to be defined in the headers.
Furthermore, if LLVM is compiled with threads disabled then there
may even be no mutex to acquire anyway, so it should not be up to
individual APIs to know whether or not acquiring a mutex is required
to use those APIs to begin with. It should be up to the user of the
API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211125 91177308-0d34-0410-b5e6-96231b3b80d8
These parameters are intended to serve as sort of a contract that
you cannot access the functions outside of a mutex. However, the
entire JIT class cannot be accessed outside of a mutex anyway, and
all methods acquire a lock as soon as they are entered. Since the
containing class already is not intended to be thread-safe, it only
serves to add code clutter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211071 91177308-0d34-0410-b5e6-96231b3b80d8
These were being used as unreferenced parameters to enforce that
the methods must not be called without holding a mutex, but all
of the methods in question were internal, and the methods were
only exposed through an interface whose entire purpose was to
serialize access to these structures, so expecting the methods
to be accessed under a mutex is reasonable enough.
Reviewed by: blaikie
Differential Revision: http://reviews.llvm.org/D4162
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211054 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have c++11, even things like ErrorOr<std::unique_ptr<...>> are
easy to use.
No intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211033 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minimal change to remove the header. I will remove the occurrences
of "using std::error_code" in a followup patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210803 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210062 91177308-0d34-0410-b5e6-96231b3b80d8
This patch updates IntelJITEventListener.cpp to account for revision 206654, which removed some methods from DILineInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209989 91177308-0d34-0410-b5e6-96231b3b80d8
There is no std::error_code::success, so this removes much of the noise
in transitioning to std::error_code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209952 91177308-0d34-0410-b5e6-96231b3b80d8
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
We do all of our address arithmetic in 64-bit, and operations involving
logically negative 32-bit offsets (actually represented as unsigned 64 bit ints)
often overflow into higher bits. The overflow check could be preserved by
casting to uint32 at the callsite for applyRelocationValue, but this would
eliminate the value of the check.
The right way to handle overflow in relocations is to make relocation processing
target specific, and compute the values for RelocationEntry objects in the
appropriate types (32-bit for 32-bit targets, 64-bit for 64-bit targets). This
is coming as part of the cleanup I'm working on.
This fixes another i386 regression test.
<rdar://problem/16889891>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209536 91177308-0d34-0410-b5e6-96231b3b80d8
i386.
This fixes two more MCJIT regression tests on i386:
ExecutionEngine/MCJIT/2003-05-06-LivenessClobber.ll
ExecutionEngine/MCJIT/2013-04-04-RelocAddend.ll
The implementation of processScatteredVANILLA is tasteless (*ba-dum-ching*),
but I'm working on a substantial tidy-up of RuntimeDyldMachO that should
improve things.
This patch also fixes a type-o in RuntimeDyldMachO::processSECTDIFFRelocation,
and teaches that method to skip over the PAIR reloc following the SECTDIFF.
<rdar://problem/16961886>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209478 91177308-0d34-0410-b5e6-96231b3b80d8
For GOT relocations the addend should modify the offset to the
GOT entry, not the value of the entry itself. Teach RuntimeDyldMachO
to do The Right Thing here.
Fixes <rdar://problem/16961886>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209154 91177308-0d34-0410-b5e6-96231b3b80d8
SECTDIFF relocations on 32-bit x86.
This fixes several of the MCJIT regression test failures that show up on 32-bit
builds.
<rdar://problem/16886294>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208635 91177308-0d34-0410-b5e6-96231b3b80d8
around RelocationEntries, rather than passing the same information via loose
arguments.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208375 91177308-0d34-0410-b5e6-96231b3b80d8
relocation entries it applies.
Prior to this patch, RuntimeDyldImpl::resolveExternalSymbols discarded
relocations for external symbols once they had been applied. This causes issues
if the client calls MCJIT::finalizeLoadedModules more than once, and updates the
location of any symbols in between (e.g. by calling MCJIT::mapSectionAddress).
No test case yet: None of our in-tree memory managers support moving sections
around. I'll have to hack up a dummy memory manager before I can write a unit
test.
Fixes <rdar://problem/16764378>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208257 91177308-0d34-0410-b5e6-96231b3b80d8
A bunch of switch cases were missing, not just for ARM64 but also for
AArch64_BE. I've fixed all those, but there's zero testing as
ExecutionEngine tests are disabled when crosscompiling and I don't
have a native platform available to test on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207626 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC 2013 provides std::make_unique, which it finds with ADL when one of
the parameters is std::unique_ptr, leading to an ambiguous overload.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207597 91177308-0d34-0410-b5e6-96231b3b80d8
Seems MSVC wants to be able to codegen inline-definitions of virtual
functions even in TUs that don't define the key function - and it's well
within its rights to do so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207581 91177308-0d34-0410-b5e6-96231b3b80d8
This starts in MCJIT::getSymbolAddress where the
unique_ptr<object::Binary> is release()d and (after a cast) passed to a
single caller, MCJIT::addObjectFile.
addObjectFile calls RuntimeDyld::loadObject.
RuntimeDld::loadObject calls RuntimeDyldELF::createObjectFromFile
And the pointer is never owned at this point. I say this point, because
the alternative codepath, RuntimeDyldMachO::createObjectFile certainly
does take ownership, so this seemed like a good hint that this was a/the
right place to take ownership.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207580 91177308-0d34-0410-b5e6-96231b3b80d8
definition below all the header #include lines. This updates most of the
miscellaneous other lib/... directories. A few left though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206845 91177308-0d34-0410-b5e6-96231b3b80d8
We normally don't drop functions from the C API's, but in this case I think we
can:
* The old implementation of getFileOffset was fairly broken
* The introduction of LLVMGetSymbolFileOffset was itself a C api breaking
change as it removed LLVMGetSymbolOffset.
* It is an incredibly specialized use case. The only reason MCJIT needs it is
because of its odd position of being a dynamic linker of .o files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206750 91177308-0d34-0410-b5e6-96231b3b80d8
Previously module verification was always enabled, with no way to turn it off.
As of this commit, module verification is on by default in Debug builds, and off
by default in release builds. The default behaviour can be overridden by calling
setVerifyModules(bool) on the JIT instance (this works for both the old JIT, and
MCJIT).
<rdar://problem/16150008>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206561 91177308-0d34-0410-b5e6-96231b3b80d8
by removing the MallocSlabAllocator entirely and just using
MallocAllocator directly. This makes all off these allocators expose and
utilize the same core interface.
The only ugly part of this is that it exposes the fact that the JIT
allocator has no real handling of alignment, any more than the malloc
allocator does. =/ It would be nice to fix both of these to support
alignments, and then to leverage that in the BumpPtrAllocator to do less
over allocation in order to manually align pointers. But, that's another
patch for another day. This patch has no functional impact, it just
removes the somewhat meaningless wrapper around MallocAllocator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206267 91177308-0d34-0410-b5e6-96231b3b80d8
abstract interface. The only user of this functionality is the JIT
memory manager and it is quite happy to have a custom type here. This
removes a virtual function call and a lot of unnecessary abstraction
from the common case where this is just a *very* thin vaneer around
a call to malloc.
Hopefully still no functionality changed here. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206149 91177308-0d34-0410-b5e6-96231b3b80d8
slabs rather than embedding a singly linked list in the slabs
themselves. This has a few advantages:
- Better utilization of the slab's memory by not wasting 16-bytes at the
front.
- Simpler allocation strategy by not having a struct packed at the
front.
- Avoids paging every allocated slab in just to traverse them for
deallocating or dumping stats.
The latter is the really nice part. Folks have complained from time to
time bitterly that tearing down a BumpPtrAllocator, even if it doesn't
run any destructors, pages in all of the memory allocated. Now it won't.
=]
Also resolves a FIXME with the scaling of the slab sizes. The scaling
now disregards specially sized slabs for allocations larger than the
threshold.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206147 91177308-0d34-0410-b5e6-96231b3b80d8
- take->release: LLVM has moved to C++11. MockWrapper became an instance of unique_ptr.
- method symbol_iterator::increment disappeared recently, in this revision:
r200442 | rafael | 2014-01-29 20:49:50 -0600 (Wed, 29 Jan 2014) | 9 lines
Simplify the handling of iterators in ObjectFile.
None of the object file formats reported error on iterator increment. In
retrospect, that is not too surprising: no object format stores symbols or
sections in a linked list or other structure that requires chasing pointers.
As a consequence, all error checking can be done on begin() and end().
This reduces the text segment of bin/llvm-readobj in my machine from 521233 to
518526 bytes.
My change mimics the change that the revision made to lib/DebugInfo/DWARFContext.cpp .
- const_cast: Shut up a warning from gcc.
I ran unittests/ExecutionEngine/JIT/Debug+Asserts/JITTests to make sure it worked.
- Arch
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205689 91177308-0d34-0410-b5e6-96231b3b80d8
parameters rather than runtime parameters.
There is only one user of these parameters and they are compile time for
that user. Making these compile time seems to better reflect their
intended usage as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205143 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
top of the default jit memory manager. This will allow them to be used
as template parameters rather than runtime parameters in a subsequent
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204992 91177308-0d34-0410-b5e6-96231b3b80d8
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204934 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r204781.
I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204784 91177308-0d34-0410-b5e6-96231b3b80d8
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204781 91177308-0d34-0410-b5e6-96231b3b80d8
Some targets require more than one relocation entry to perform a relocation.
This change allows processRelocationRef to process more than one relocation
entry at a time by passing the relocation iterator itself instead of just
the relocation entry.
Related to <rdar://problem/16199095>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204439 91177308-0d34-0410-b5e6-96231b3b80d8
RTDyldMemoryManager, regardless of whether it thinks they're "required for
execution".
Currently, RuntimeDyld only passes sections that are "required for execution"
to the RTDyldMemoryManager, and takes "required for execution" to mean exactly
"contains symbols or relocations". There are two problems with this:
(1) It can drop sections with anonymous data that is referenced by code.
(2) It leaves the JIT client no way to inspect interesting sections that aren't
actually required to run the program (e.g dwarf sections).
A test case is still in the works.
Future work: We may want to replace this with a generic section filtering
mechanism, but that will require more consideration. For now, this flag at least
allows clients to volunteer to do the filtering themselves.
Fixes <rdar://problem/15177691>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204398 91177308-0d34-0410-b5e6-96231b3b80d8