According to AVX specification:
"Most arithmetic and data processing instructions encoded using the VEX prefix and
performing memory accesses have more flexible memory alignment requirements
than instructions that are encoded without the VEX prefix. Specifically,
With the exception of explicitly aligned 16 or 32 byte SIMD load/store instructions,
most VEX-encoded, arithmetic and data processing instructions operate in
a flexible environment regarding memory address alignment, i.e. VEX-encoded
instruction with 32-byte or 16-byte load semantics will support unaligned load
operation by default. Memory arguments for most instructions with VEX prefix
operate normally without causing #GP(0) on any byte-granularity alignment
(unlike Legacy SSE instructions)."
The same for AVX-512.
This change does not affect anything right now, because only the "memop pattern fragment"
depends on FeatureVectorUAMem and it is not used in AVX patterns.
All AVX patterns are based on the "unaligned load" anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224330 91177308-0d34-0410-b5e6-96231b3b80d8
It's horrible to inspect `MDNode`s in a debugger. All of their operands
that are `MDNode`s get dumped as `<badref>`, since we can't assign
metadata slots in the context of a `Metadata::dump()`. (Why not? Why
not assign numbers lazily? Because then each time you called `dump()`,
a given `MDNode` could have a different lazily assigned number.)
Fortunately, the C memory model gives us perfectly good identifiers for
`MDNode`. Add pointer addresses to the dumps, transforming this:
(lldb) e N->dump()
!{i32 662302, i32 26, <badref>, null}
(lldb) e ((MDNode*)N->getOperand(2))->dump()
!{i32 4, !"foo"}
into:
(lldb) e N->dump()
!{i32 662302, i32 26, <0x100706ee0>, null}
(lldb) e ((MDNode*)0x100706ee0)->dump()
!{i32 4, !"foo"}
and this:
(lldb) e N->dump()
0x101200248 = !{<badref>, <badref>, <badref>, <badref>, <badref>}
(lldb) e N->getOperand(0)
(const llvm::MDOperand) $0 = {
MD = 0x00000001012004e0
}
(lldb) e N->getOperand(1)
(const llvm::MDOperand) $1 = {
MD = 0x00000001012004e0
}
(lldb) e N->getOperand(2)
(const llvm::MDOperand) $2 = {
MD = 0x0000000101200058
}
(lldb) e N->getOperand(3)
(const llvm::MDOperand) $3 = {
MD = 0x00000001012004e0
}
(lldb) e N->getOperand(4)
(const llvm::MDOperand) $4 = {
MD = 0x0000000101200058
}
(lldb) e ((MDNode*)0x00000001012004e0)->dump()
!{}
(lldb) e ((MDNode*)0x0000000101200058)->dump()
!{null}
into:
(lldb) e N->dump()
!{<0x1012004e0>, <0x1012004e0>, <0x101200058>, <0x1012004e0>, <0x101200058>}
(lldb) e ((MDNode*)0x1012004e0)->dump()
!{}
(lldb) e ((MDNode*)0x101200058)->dump()
!{null}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224325 91177308-0d34-0410-b5e6-96231b3b80d8
This test was missing a `Debug Info Version` so it's `not grep` was
passing vacuously. Update it to CHECK for something useful at the same
time so it doesn't bitrot quite so easily in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224324 91177308-0d34-0410-b5e6-96231b3b80d8
The use of SP and PC in the register list for stores is deprecated on ARM
(ARM ARM A.8.8.199):
ARM deprecates the use of ARM instructions that include the SP or the PC in
the list.
Provide a deprecation warning from the assembler in the case that the syntax is
ever seen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224319 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC backend, somewhat embarrassingly, did not generate an
optimal-length sequence of instructions for a 32-bit bswap. While adding a
pattern for the bswap intrinsic to fix this would not have been terribly
difficult, doing so would not have addressed the real problem: we had been
generating poor code for many bit-permuting operations (by which I mean things
like byte-swap that permute the bits of one or more inputs around in various
ways). Here are some initial steps toward solving this deficiency.
Bit-permuting operations are represented, at the SDAG level, using ISD::ROTL,
SHL, SRL, AND and OR (mostly with constant second operands). Looking back
through these operations, we can build up a description of the bits in the
resulting value in terms of bits of one or more input values (and constant
zeros). For each bit, we compute the rotation amount from the original value,
and then group consecutive (value, rotation factor) bits into groups. Groups
sharing these attributes are then collected and sorted, and we can then
instruction select the entire permutation using a combination of masked
rotations (rlwinm), imm ands (andi/andis), and masked rotation inserts
(rlwimi).
The result is that instead of lowering an i32 bswap as:
rlwinm 5, 3, 24, 16, 23
rlwinm 4, 3, 24, 0, 7
rlwimi 4, 3, 8, 8, 15
rlwimi 5, 3, 8, 24, 31
rlwimi 4, 5, 0, 16, 31
we now produce:
rlwinm 4, 3, 8, 0, 31
rlwimi 4, 3, 24, 16, 23
rlwimi 4, 3, 24, 0, 7
and for the 'test6' example in the PowerPC/README.txt file:
unsigned test6(unsigned x) {
return ((x & 0x00FF0000) >> 16) | ((x & 0x000000FF) << 16);
}
we used to produce:
lis 4, 255
rlwinm 3, 3, 16, 0, 31
ori 4, 4, 255
and 3, 3, 4
and now we produce:
rlwinm 4, 3, 16, 24, 31
rlwimi 4, 3, 16, 8, 15
and, as a nice bonus, this fixes the FIXME in
test/CodeGen/PowerPC/rlwimi-and.ll.
This commit does not include instruction-selection for i64 operations, those
will come later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224318 91177308-0d34-0410-b5e6-96231b3b80d8
This changes subrange calculation to calculate subranges sequentially
instead of in parallel. The code is easier to understand that way and
addresses the code review issues raised about LiveOutData being
hard to understand/needing more comments by removing them :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224313 91177308-0d34-0410-b5e6-96231b3b80d8
Debug info marks the first instruction without the FrameSetup flag
as being the end of the function prologue. Any CFI instructions in the
middle of the function prologue would cause debug info to end the prologue
too early and worse, attach the line number of the CFI instruction, which
incidentally is often 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224294 91177308-0d34-0410-b5e6-96231b3b80d8
isKnownPredicate.
The motivation for this change is to optimize away checks in loops
like this:
limit = min(t, len)
for (i = 0 to limit)
if (i >= len || i < 0) throw_array_of_of_bounds();
a[i] = ...
Differential Revision: http://reviews.llvm.org/D6635
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224285 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: x86 allows either ordering for the LOCK and DATA16 prefixes, but using GCC+GAS leads to different code generation than using LLVM. This change matches the order that GAS emits the x86 prefixes when a semicolon isn't used in inline assembly (see tc-i386.c comment before define LOCK_PREFIX), and helps simplify tooling that operates on the instruction's byte sequence (such as NaCl's validator). This change shouldn't have any performance impact.
Test Plan: ninja check
Reviewers: craig.topper, jvoung
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D6630
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224283 91177308-0d34-0410-b5e6-96231b3b80d8
Revert until I find out why non-subreg enabled targets break.
This reverts commit 6097277eefb9c5fb35a7f493c783ee1fd1b9d6a7.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224278 91177308-0d34-0410-b5e6-96231b3b80d8
r223763 was made to work around a temporary issue where a user of the
JIT was passing down a declaration (incorrectly). This shouldn't
occur, so assert rather than silently continue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224277 91177308-0d34-0410-b5e6-96231b3b80d8
This changes subrange calculation to calculate subranges sequentially
instead of in parallel. The code is easier to understand that way and
addresses the code review issues raised about LiveOutData being
hard to understand/needing more comments by removing them :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224272 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
Add in definedness checks for shift operators, null checks when
pointers are assumed by the code to be non-null, and explicit
unreachables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224255 91177308-0d34-0410-b5e6-96231b3b80d8
- by Ella Bolshinsky
The alias analysis is used define whether the given instruction
is a barrier for store sinking. For 2 identical stores, following
instructions are checked in the both basic blocks, to determine
whether they are sinking barriers.
http://reviews.llvm.org/D6420
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224247 91177308-0d34-0410-b5e6-96231b3b80d8
Adds the various "rm" instruction variants into the list of instructions that have a partial register update. Also adds all variants of SQRTSD that were missing in the original list.
Differential Revision: http://reviews.llvm.org/D6620
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224246 91177308-0d34-0410-b5e6-96231b3b80d8
The line mapping information for dynamic code is reported incorrectly. It causes VTune to map LLVM generated code to source lines incorrectly. This patch fix this issue.
Patch by Denis Pravdin.
Differential Revision: http://reviews.llvm.org/D6603
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224229 91177308-0d34-0410-b5e6-96231b3b80d8