when the condition is constant. This optimization shouldn't be
necessary, because codegen shouldn't be able to find dead control
paths that the IR-level optimizer can't find. And it's undesirable,
because it encourages bugpoint to leave "br i1 false" branches
in its output. And it wasn't updating the CFG.
I updated all the tests I could, but some tests are too reduced
and I wasn't able to meaningfully preserve them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106748 91177308-0d34-0410-b5e6-96231b3b80d8
- This fixed a number of bugs in if-converter, tail merging, and post-allocation
scheduler. If-converter now runs branch folding / tail merging first to
maximize if-conversion opportunities.
- Also changed the t2IT instruction slightly. It now defines the ITSTATE
register which is read by instructions in the IT block.
- Added Thumb2 specific hazard recognizer to ensure the scheduler doesn't
change the instruction ordering in the IT block (since IT mask has been
finalized). It also ensures no other instructions can be scheduled between
instructions in the IT block.
This is not yet enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106344 91177308-0d34-0410-b5e6-96231b3b80d8
instructions, but it doesn't really understand live ranges, so the first
INSERT_SUBREG uses an implicitly defined register.
Fix it in LiveVariableAnalysis by adding the <undef> flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106333 91177308-0d34-0410-b5e6-96231b3b80d8
basic tests.
This has been well tested on Darwin but not elsewhere.
It should work provided the linker correctly resolves
B.W <label in other function>
which it has not seen before, at least from llvm-based
compilers. I'm leaving the arm-tail-calls switch in
until I see if there's any problems because of that;
it might need to be disabled for some environments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106299 91177308-0d34-0410-b5e6-96231b3b80d8
LiveVariableAnalysis was a bit picky about a register only being redefined once,
but that really isn't necessary.
Here is an example of chained INSERT_SUBREGs that we can handle now:
68 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1028<kill>, 14
register: %reg1040 +[70,134:0)
76 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1029<kill>, 13
register: %reg1040 replace range with [70,78:1) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,134:0) 0@78-(134) 1@70-(78)
84 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1030<kill>, 12
register: %reg1040 replace range with [78,86:2) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,134:0) 0@86-(134) 1@70-(78) 2@78-(86)
92 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1031<kill>, 11
register: %reg1040 replace range with [86,94:3) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,94:3)[94,134:0) 0@94-(134) 1@70-(78) 2@78-(86) 3@86-(94)
rdar://problem/8096390
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106152 91177308-0d34-0410-b5e6-96231b3b80d8
Given a copy instruction, CoalescerPair can determine which registers to
coalesce in order to eliminate the copy. It deals with all the subreg fun to
determine a tuple (DstReg, SrcReg, SubIdx) such that:
- SrcReg is a virtual register that will disappear after coalescing.
- DstReg is a virtual or physical register whose live range will be extended.
- SubIdx is 0 when DstReg is a physical register.
- SrcReg can be joined with DstReg:SubIdx.
CoalescerPair::isCoalescable() determines if another copy instruction is
compatible with the same tuple. This fixes some NEON miscompilations where
shuffles are getting coalesced as if they were copies.
The CoalescerPair class will replace a lot of the spaghetti logic in JoinCopy
later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105997 91177308-0d34-0410-b5e6-96231b3b80d8
Fix it by changing the T2I_rbin_s_is multiclass to handle the CPSR
output and 'S' suffix in the same way as T2I_bin_s_irs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104531 91177308-0d34-0410-b5e6-96231b3b80d8
copying VFP subregs. This exposed a bunch of dead code in the *spill-q.ll
tests, so I tweaked those tests to keep that code from being optimized away.
Radar 7872877.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104415 91177308-0d34-0410-b5e6-96231b3b80d8
beneficial cases. See the changes in test/CodeGen/X86/tail-opts.ll and
test/CodeGen/ARM/ifcvt2.ll for details.
The fix is to change HashEndOfMBB to hash at most one instruction,
instead of trying to apply heuristics about when it will be profitable to
consider more than one instruction. The regular tail-merging heuristics
are already prepared to handle the same cases, and they're more precise.
Also, make test/CodeGen/ARM/ifcvt5.ll and
test/CodeGen/Thumb2/thumb2-branch.ll slightly more complex so that they
continue to test what they're intended to test.
And, this eliminates the problem in
test/CodeGen/Thumb2/2009-10-15-ITBlockBranch.ll, the testcase from
PR5204. Update it accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102907 91177308-0d34-0410-b5e6-96231b3b80d8
instructions to help disassembly.
We also changed the output of the addressing modes to omit the '+' from the
assembler syntax #+/-<imm> or +/-<Rm>. See, for example, A8.6.57/58/60.
And modified test cases to not expect '+' in +reg or #+num. For example,
; CHECK: ldr.w r9, [r7, #28]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98745 91177308-0d34-0410-b5e6-96231b3b80d8
U test/CodeGen/ARM/tls2.ll
U test/CodeGen/ARM/arm-negative-stride.ll
U test/CodeGen/ARM/2009-10-30.ll
U test/CodeGen/ARM/globals.ll
U test/CodeGen/ARM/str_pre-2.ll
U test/CodeGen/ARM/ldrd.ll
U test/CodeGen/ARM/2009-10-27-double-align.ll
U test/CodeGen/Thumb2/thumb2-strb.ll
U test/CodeGen/Thumb2/ldr-str-imm12.ll
U test/CodeGen/Thumb2/thumb2-strh.ll
U test/CodeGen/Thumb2/thumb2-ldr.ll
U test/CodeGen/Thumb2/thumb2-str_pre.ll
U test/CodeGen/Thumb2/thumb2-str.ll
U test/CodeGen/Thumb2/thumb2-ldrh.ll
U utils/TableGen/TableGen.cpp
U utils/TableGen/DisassemblerEmitter.cpp
D utils/TableGen/RISCDisassemblerEmitter.h
D utils/TableGen/RISCDisassemblerEmitter.cpp
U Makefile.rules
U lib/Target/ARM/ARMInstrNEON.td
U lib/Target/ARM/Makefile
U lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
U lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
U lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
D lib/Target/ARM/Disassembler
U lib/Target/ARM/ARMInstrFormats.td
U lib/Target/ARM/ARMAddressingModes.h
U lib/Target/ARM/Thumb2ITBlockPass.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98640 91177308-0d34-0410-b5e6-96231b3b80d8
(RISCDisassemblerEmitter) which emits the decoder functions for ARM and Thumb,
and the disassembler core which invokes the decoder function and builds up the
MCInst based on the decoded Opcode.
Added sub-formats to the NeonI/NeonXI instructions to further refine the NEONFrm
instructions to help disassembly.
We also changed the output of the addressing modes to omit the '+' from the
assembler syntax #+/-<imm> or +/-<Rm>. See, for example, A8.6.57/58/60.
And modified test cases to not expect '+' in +reg or #+num. For example,
; CHECK: ldr.w r9, [r7, #28]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98637 91177308-0d34-0410-b5e6-96231b3b80d8
This does not move entirely to UAL syntax, since the default "increment after"
suffix is empty but we still use "IA" for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98635 91177308-0d34-0410-b5e6-96231b3b80d8
immediate instructions cannot set the condition codes, so they do not have
the extra cc_out operand. We hit an assertion during tail duplication
because the instruction being duplicated had more operands that expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98001 91177308-0d34-0410-b5e6-96231b3b80d8
- Function uses all scratch registers AND
- Function does not use any callee saved registers AND
- Stack size is too big to address with immediate offsets.
In this case a register must be scavenged to calculate the address of a stack
object, and the scavenger needs a spare register or emergency spill slot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97071 91177308-0d34-0410-b5e6-96231b3b80d8
phi cycles. Adjust a few tests to keep dead instructions from being optimized
away. This (together with my previous change for phi cycles) fixes Apple
radar 7627077.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96057 91177308-0d34-0410-b5e6-96231b3b80d8
bug fixes, and with improved heuristics for analyzing foreign-loop
addrecs.
This change also flattens IVUsers, eliminating the stride-oriented
groupings, which makes it easier to work with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95975 91177308-0d34-0410-b5e6-96231b3b80d8
reduce down to a single value. InstCombine already does this transformation
but DAG legalization may introduce new opportunities. This has turned out to
be important for ARM where 64-bit values are split up during type legalization:
InstCombine is not able to remove the PHI cycles on the 64-bit values but
the separate 32-bit values can be optimized. I measured the compile time
impact of this (running llc on 176.gcc) and it was not significant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95951 91177308-0d34-0410-b5e6-96231b3b80d8