Clients of MemoryBuffer::getOpenFile expect it not to take ownership of the file
descriptor passed in. So don't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176995 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't reset all of the target options within the TargetOptions
object. This is because some of those are ABI-specific and must be determined if
it's okay to change those on the fly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176986 91177308-0d34-0410-b5e6-96231b3b80d8
This is the next step towards making the metadata for DIScopes have a common
prefix rather than having to delegate based on their tag type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176913 91177308-0d34-0410-b5e6-96231b3b80d8
This pass is meant to be immutable, however it holds mutable state to cache StructLayouts.
This method will allow the pass manager to clear the mutable state between runs.
Note that unfortunately it is still necessary to have the destructor, even though it does the
same thing as doFinalization. This is because most TargetMachines embed a DataLayout on which
doFinalization isn't run as its never added to the pass manager.
I also didn't think it was necessary to complication things with a deInit method for which
doFinalization and ~DataLayout both call as there's only one field of mutable state. If we had
more fields to finalize i'd have added this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176877 91177308-0d34-0410-b5e6-96231b3b80d8
Versioned debug info support has been a burden to maintain & also compromised
current debug info verification by causing test cases testing old debug info to
remain rather than being updated to the latest. It also makes it hard to add or
change the metadata schema by requiring various backwards-compatibility in the
DI* hierarchy.
So it's being removed in preparation for new changes to the schema to tidy up
old/unnecessary fields and add new fields needed for new debug info (well, new
to LLVM at least).
The more surprising part of this is the changes to DI*::Verify - this became
necessary due to the changes to AsmWriter. AsmWriter was relying on the version
test to decide which bits of metadata were actually debug info when printing
the comment annotations. Without the version information the tag numbers were
too common & it would print debug info on random metadata that happened to
start with an integer that matched a tag number. Instead this change makes the
Verify functions more precise (just adding "number of operands" checks - not
type checking those operands yet) & relies on that to decide which metadata is
debug info metadata.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176838 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Statistics are still available in Release+Asserts (any +Asserts builds),
and stats can also be turned on with LLVM_ENABLE_STATS.
Move some of the FastISel stats that were moved under DEBUG()
back out of DEBUG(), since stats are disabled across the board now.
Many tests depend on grepping "-stats" output. Move those into
a orig_dir/Stats/. so that they can be marked as unsupported
when building without statistics.
Differential Revision: http://llvm-reviews.chandlerc.com/D486
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176733 91177308-0d34-0410-b5e6-96231b3b80d8
This pass hasn't been touched in two years & would fail with assertions against
the current debug info metadata format (the only test case for it still uses a
many-versions old debug info metadata format)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176707 91177308-0d34-0410-b5e6-96231b3b80d8
In very rare cases caused by irreducible control flow, the dominating
block can have the same trace head without actually being part of the
trace.
As long as such a dominator still has valid instruction depths, it is OK
to use it for computing instruction depths.
Rename the function to avoid lying, and add a check that instruction
depths are computed for the dominator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176668 91177308-0d34-0410-b5e6-96231b3b80d8
into the actual gcov file.
Instead of using the bottom 4 bytes as the function identifier, use a counter.
This makes the identifier numbers stable across multiple runs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176616 91177308-0d34-0410-b5e6-96231b3b80d8
We now emit a line table for each compile unit. To reduce the prologue size
of each line table, the files and directories used by each compile unit are
stored in std::map<unsigned, std::vector< > > instead of std::vector< >.
The prologue for a lto'ed image can be as big as 93K. Duplicating 93K for each
compile unit causes a huge increase of debug info. With this patch, each
prologue will only emit the files required by the compile unit.
rdar://problem/13342023
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176605 91177308-0d34-0410-b5e6-96231b3b80d8
The "invariant.load" metadata indicates the memory unit being accessed is immutable.
A load annotated with this metadata can be moved across any store.
As I am not sure if it is legal to move such loads across barrier/fence, this
change dose not allow such transformation.
rdar://11311484
Thank Arnold for code review.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176562 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds many more functions to the target library information.
All of the functions being added were discovered while doing the migration
of the simplify-libcalls attribute annotation functionality to the
functionattrs pass. As a part of that work the attribute annotation logic
will query TLI to determine if a function should be annotated or not.
Signed-off-by: Meador Inge <meadori@codesourcery.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176514 91177308-0d34-0410-b5e6-96231b3b80d8
Clarify that we mean the object starting at the pointer to the end of the
underlying object and not the size of the whole allocated object.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176491 91177308-0d34-0410-b5e6-96231b3b80d8
This adds minimalistic support for PHI nodes to llvm.objectsize() evaluation
fingers crossed so that it does break clang boostrap again..
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176408 91177308-0d34-0410-b5e6-96231b3b80d8
this is similar to getObjectSize(), but doesnt subtract the offset
tweak the BasicAA code accordingly (per PR14988)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176407 91177308-0d34-0410-b5e6-96231b3b80d8
This reduces the time actually spent doing string to ID conversion and shows a 10% improvement in compile time for a particularly bad case that involves ARM Neon intrinsics (these have many overloads).
Patch by Jean-Luc Duprat!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176365 91177308-0d34-0410-b5e6-96231b3b80d8
- ISD::SHL/SRL/SRA must have either both scalar or both vector operands
but TLI.getShiftAmountTy() so far only return scalar type. As a
result, backend logic assuming that breaks.
- Rename the original TLI.getShiftAmountTy() to
TLI.getScalarShiftAmountTy() and re-define TLI.getShiftAmountTy() to
return target-specificed scalar type or the same vector type as the
1st operand.
- Fix most TICG logic assuming TLI.getShiftAmountTy() a simple scalar
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176364 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAGIsel::LowerArguments needs a function, not a basic block. So it
makes sense to pass it the function instead of extracting a basic-block from
the function and then tossing it. This is also more self-documenting (functions
have arguments, BBs don't).
In addition, added comments to a couple of Select* methods.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176305 91177308-0d34-0410-b5e6-96231b3b80d8
passing a null pointer to the function name in to GCDAProfiling, and add another
switch onto GCOVProfiling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176173 91177308-0d34-0410-b5e6-96231b3b80d8
enhancement done the trivial way; by extending inputs and truncating outputs
which is addequate for targets with little or no support for integer arithmetic
on integer types less than 32 bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176139 91177308-0d34-0410-b5e6-96231b3b80d8
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176075 91177308-0d34-0410-b5e6-96231b3b80d8
The 'nobuiltin' attribute is applied to call sites to indicate that LLVM should
not treat the callee function as a built-in function. I.e., it shouldn't try to
replace that function with different code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175835 91177308-0d34-0410-b5e6-96231b3b80d8
After cleaning up the following type hierarchies:
* TypeLoc: r175462
* SVal: r175594
* CFGElement: r175462
* ProgramPoint: r175812
that all invoked undefined behavior by causing a derived copy construction of a
base object through an invalid cast (thus supporting code that relied on
casting temporaries that were direct base objects) Clang/LLVM is now clean of
casts of temporaries. So here's some fun SFINAE machinery (courtesy of Eli
Friedman, with some porting back from C++11 to LLVM's traits by me) to cause
compile-time failures if llvm::cast & friends are ever passed an rvalue.
This should avoid a repeat of anything even remotely like PR14321/r168124.
Thanks to Jordan Rose for the help with the various Static Analyzer related
hierarchies that needed cleaning up, Eli for the SFINAE, Richard Smith, John
McCall, Ted Kremenek, and Anna Zaks for their input/reviews/patience along the
way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175819 91177308-0d34-0410-b5e6-96231b3b80d8
be set to zero that is what it was intended. Should improve performance of
the data structure when clear is invoked frequently (both compile time and
memory usage).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175799 91177308-0d34-0410-b5e6-96231b3b80d8
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175788 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes some problems with too conservative checking where we were
marking all aliases of a register as used, and then also checking all
aliases when allocating a register.
<rdar://problem/13249625>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175782 91177308-0d34-0410-b5e6-96231b3b80d8
This implementation of NoneType/None does have some holes but I haven't
found one that doesn't - open to improvement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175696 91177308-0d34-0410-b5e6-96231b3b80d8
Adding new segments to large LiveIntervals can be expensive because the
LiveRange objects after the insertion point may need to be moved left or
right. This can cause quadratic behavior when adding a large number of
segments to a live range.
The LiveRangeUpdater class allows the LIveInterval to be in a temporary
invalid state while segments are being added. It maintains an internal
gap in the LiveInterval when it is shrinking, and it has a spill area
for new segments when the LiveInterval is growing.
The behavior is similar to the existing mergeIntervalRanges() function,
except it allocates less memory for the spill area, and the algorithm is
turned inside out so the loop is driven by the clients.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175644 91177308-0d34-0410-b5e6-96231b3b80d8
and removing instructions. The implementation seems more complicated than it
needs to be, but I couldn't find something simpler that dealt with all of the
corner cases.
Also add a call to repairIndexesInRange() from repairIntervalsInRange().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175601 91177308-0d34-0410-b5e6-96231b3b80d8
This generalizes Optional to require less from the T type by using aligned
storage for backing & placement new/deleting the T into it when necessary.
Also includes unit tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175580 91177308-0d34-0410-b5e6-96231b3b80d8
excluding visibility bits.
Mips (o32 abi) specific e_header setting.
EF_MIPS_ABI_O32 needs to be set in the
ELF header flags for o32 abi output.
Contributer: Reed Kotler
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175569 91177308-0d34-0410-b5e6-96231b3b80d8
excluding visibility bits.
Mips (Mips16) specific e_header setting.
EF_MIPS_ARCH_ASE_M16 needs to be set in the
ELF header flags for Mips16.
Contributer: Reed Kotler
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175566 91177308-0d34-0410-b5e6-96231b3b80d8
excluding visibility bits.
Mips (MicroMips) specific STO handling .
The st_other field settig for STO_MIPS_MICROMIPS
Contributer: Zoran Jovanovic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175564 91177308-0d34-0410-b5e6-96231b3b80d8
excluding visibility bits.
Generic STO handling at the Target level.
The st_other field of the ELF symbol table is one
byte in size. The first 2 bytes are used for generic
visibility and are currently handled by llvm.
The other six bits are processor specific and need
to be set at the target level.
A couple of notes:
The new static methods for accessing and setting the "other"
flags in include/llvm/MC/MCELF.h match the style guide
and not the other methods in the file. I don't like the
inconsistency, but feel I should follow the prescribed
lowerUpper() convention.
STO_ value definitions are not specified in gnu land as
consistently as the STT_ and STB_ fields. Probably because
the latter were defined in a standards doc and the former
defined partially in code. I have stuck with the full byte
definition of the flags.
Contributer: Zoran Jovanovic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175561 91177308-0d34-0410-b5e6-96231b3b80d8
Also, GetElementPtrInst::getType() method returns SequentialType now, instead of
PointerType. There wasn't any issue yet, so no testcase attached.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175452 91177308-0d34-0410-b5e6-96231b3b80d8
arguably better than forward iterators for this use case, they are confusing and
there are some implementation problems with reverse iterators and MI bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175393 91177308-0d34-0410-b5e6-96231b3b80d8
terminators that actually have register uses when splitting critical edges.
This commit also introduces a method repairIntervalsInRange() on LiveIntervals,
which allows for repairing LiveIntervals in a small range after an arbitrary
target hook modifies, inserts, and removes instructions. It's pretty limited
right now, but I hope to extend it to support all of the things that are done
by the convertToThreeAddress() target hooks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175382 91177308-0d34-0410-b5e6-96231b3b80d8
Avoids malloc and is a lot denser. We lose iteration over target independent
attributes, but that's a strange interface anyways and didn't have any users
outside of AttrBuilder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175370 91177308-0d34-0410-b5e6-96231b3b80d8
If the frame pointer is omitted, and any stack changes occur in the inline
assembly, e.g.: "pusha", then any C local variable or C argument references
will be incorrect.
I pass no judgement on anyone who would do such a thing. ;)
rdar://13218191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175334 91177308-0d34-0410-b5e6-96231b3b80d8
If two functions require different features (e.g., `-mno-sse' vs. `-msse') then
we want to honor that, especially during LTO. We can do that by resetting the
subtarget's features depending upon the 'target-feature' attribute.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175314 91177308-0d34-0410-b5e6-96231b3b80d8
For some basic blocks, it is possible to generate many candidate pairs for
relatively few pairable instructions. When many (tens of thousands) of these pairs
are generated for a single instruction group, the time taken to generate and
rank the different vectorization plans can become quite large. As a result, we now
cap the number of candidate pairs within each instruction group. This is done by
closing out the group once the threshold is reached (set now at 3000 pairs).
Although this will limit the overall compile-time impact, this may not be the best
way to achieve this result. It might be better, for example, to prune excessive
candidate pairs after the fact the prevent the generation of short, but highly-connected
groups. We can experiment with this in the future.
This change reduces the overall compile-time slowdown of the csa.ll test case in
PR15222 to ~5x. If 5x is still considered too large, a lower limit can be
used as the default.
This represents a functionality change, but only for very large inputs
(thus, there is no regression test).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175251 91177308-0d34-0410-b5e6-96231b3b80d8
validateSymbol() is called all over the place, and it seems it's a debug check.
It significantly speedups llvm-symbolizer used in tsan/asan/msan. validateSymbol() is the second hot function and accounts for 15% of runtime.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175192 91177308-0d34-0410-b5e6-96231b3b80d8
Also, allow _EMIT and __EMIT for the emit directive. We already do the same
for TYPE, SIZE, and LENGTH.
rdar://13200215
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175008 91177308-0d34-0410-b5e6-96231b3b80d8
Vectors were being manually scalarized by the backend. Instead,
let the target-independent code do all of the work. The manual
scalarization was from a time before good target-independent support
for scalarization in LLVM. However, this forces us to specially-handle
vector loads and stores, which we can turn into PTX instructions that
produce/consume multiple operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174968 91177308-0d34-0410-b5e6-96231b3b80d8
This emits the attribute groups that are used by the functions. (It currently
doesn't print out return type or parameter attributes within attribute groups.)
Note: The functions still retrieve their attributes from the "old" bitcode
format (using the deprecated 'Raw()' method). This means that string attributes
within an attribute group will not show up during a disassembly. This will be
addressed in a future commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174867 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts my commit 171047. Now that I've removed my misguided attempt to
support backend warnings, these diagnostics are only about inline assembly.
It would take quite a bit more work to generalize them properly, so I'm
just reverting this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174860 91177308-0d34-0410-b5e6-96231b3b80d8
function is successfully handled by fast-isel. That's because function
arguments are *always* handled by SDISel. Introduce FastLowerArguments to
allow each target to provide hook to handle formal argument lowering.
As a proof-of-concept, add ARMFastIsel::FastLowerArguments to handle
functions with 4 or fewer scalar integer (i8, i16, or i32) arguments. It
completely eliminates the need for SDISel for trivial functions.
rdar://13163905
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174855 91177308-0d34-0410-b5e6-96231b3b80d8
I have some uncommitted changes to the cast code that catch this sort of thing
at compile-time but I still need to do some other cleanup before I can enable
it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174853 91177308-0d34-0410-b5e6-96231b3b80d8
support for updating SlotIndexes to MachineBasicBlock::SplitCriticalEdge(). This
calls renumberIndexes() every time; it should be improved to only renumber
locally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174851 91177308-0d34-0410-b5e6-96231b3b80d8
This is some initial code for emitting the attribute groups into the bitcode.
NOTE: This format *may* change! Do not rely upon the attribute groups' bitcode
not changing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174845 91177308-0d34-0410-b5e6-96231b3b80d8
bitcode writer would generate abbrev records saying that the abbrev should be
filled with fixed zero-bit bitfields (this happens in the .bc writer when
the number of types used in a module is exactly one, since log2(1) == 0).
In this case, just handle it as a literal zero. We can't "just fix" the writer
without breaking compatibility with existing bc files, so have the abbrev reader
do the substitution.
Strengthen the assert in read to reject reads of zero bits so we catch such
crimes in the future, and remove the special case designed to handle this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174801 91177308-0d34-0410-b5e6-96231b3b80d8
instead of always 32-bits at a time) with two changes:
1. Make Read(0) always return zero without affecting the state of our cursor.
2. Hack word_t to always be 32 bits, as staging.
These two caveats will change shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174800 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r171041. This was a nice idea that didn't work out well.
Clang warnings need to be associated with warning groups so that they can
be selectively disabled, promoted to errors, etc. This simplistic patch didn't
allow for that. Enhancing it to provide some way for the backend to specify
a front-end warning type seems like overkill for the few uses of this, at
least for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174748 91177308-0d34-0410-b5e6-96231b3b80d8
Aside from the question of whether we report a warning or an error when we
can't satisfy a requested stack object alignment, the current implementation
of this is not good. We're not providing any source location in the diagnostics
and the current warning is not connected to any warning group so you can't
control it. We could improve the source location somewhat, but we can do a
much better job if this check is implemented in the front-end, so let's do that
instead. <rdar://problem/13127907>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174741 91177308-0d34-0410-b5e6-96231b3b80d8
Adds a function to target transform info to query for the cost of address
computation. The cost model analysis pass now also queries this interface.
The code in LoopVectorize adds the cost of address computation as part of the
memory instruction cost calculation. Only there, we know whether the instruction
will be scalarized or not.
Increase the penality for inserting in to D registers on swift. This becomes
necessary because we now always assume that address computation has a cost and
three is a closer value to the architecture.
radar://13097204
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174713 91177308-0d34-0410-b5e6-96231b3b80d8
PR15138 was opened because of a segfault in the Bitcode writer.
The actual issue ended up being a bug in APInt where calls to
APInt::getActiveWords returns a bogus value when the APInt value
is 0. This patch fixes the problem by ensuring that getActiveWords
returns 1 for 0 valued APInts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174641 91177308-0d34-0410-b5e6-96231b3b80d8
For example, ARM has several instructions with a literal '#0' immediate in the syntax
that's not represented as an actual operand. The asm matcher is expected a token
operand, but the parser will have created an immediate operand. This is currently
handled by dedicated per-instruction C++ munging of the ParsedAsmOperand list, but
will be better handled by this hook.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174487 91177308-0d34-0410-b5e6-96231b3b80d8