In theory this allows the compiler to skip materializing the array on
the stack. In practice clang often fails to do that, but that's a
different story. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231571 91177308-0d34-0410-b5e6-96231b3b80d8
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230583 91177308-0d34-0410-b5e6-96231b3b80d8
Everyone except R600 was manually passing the length of a static array
at each callsite, calculated in a variety of interesting ways. Far
easier to let ArrayRef handle that.
There should be no functional change, but out of tree targets may have
to tweak their calls as with these examples.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230118 91177308-0d34-0410-b5e6-96231b3b80d8
The expansion code does the same thing. Since
the operands were not defined with the correct
types, this has the side effect of fixing operand
folding since the expanded pseudo would never use
SGPRs or inline immediates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230072 91177308-0d34-0410-b5e6-96231b3b80d8
This enables a few useful combines that used to only
use fma.
Also since v_mad_f32 apparently does not support denormals,
disable the existing cases that are custom handled if they are
requested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230071 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a safe interface to the machine independent InputArg struct
for accessing the index of the original (IR-level) argument. When a
non-native return type is lowered, we generate the hidden
machine-level sret argument on-the-fly. Before this fix, we were
representing this argument as OrigArgIndex == 0, which is an outright
lie. In particular this crashed in the AArch64 backend where we
actually try to access the type of the original argument.
Now we use a sentinel value for machine arguments that have no
original argument index. AArch64, ARM, Mips, and PPC now check for this
case before accessing the original argument.
Fixes <rdar://19792160> Null pointer assertion in AArch64TargetLowering
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229413 91177308-0d34-0410-b5e6-96231b3b80d8
v2i32, i32, trunc i32 to i16, and truc i32 to i8 stores are legal for
all address spaces. We had marked them as custom in order to lower
them for the private address space, but this is no longer necessary.
This enables lowering of misaligned stores of these types in the
DAGLegalizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228189 91177308-0d34-0410-b5e6-96231b3b80d8
This is true for SI only. CI+ supports unaligned memory accesses,
but this requires driver support, so for now we disallow unaligned
accesses for all GCN targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227822 91177308-0d34-0410-b5e6-96231b3b80d8
Add tests for the various combines. This should
always be at least cycle neutral on all subtargets for f64,
and faster on some. For f32 we should prefer selecting
v_mad_f32 over v_fma_f32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227484 91177308-0d34-0410-b5e6-96231b3b80d8
Don't do the v4i8 -> v4f32 combine if the load will need to
be expanded due to alignment. This stops adding instructions
to repack into a single register that the v_cvt_ubyteN_f32
instructions read.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225926 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the source and destination types can be specified,
allow doing an expansion that doesn't use an EXTLOAD of the
result type. Try to do a legal extload to an intermediate type
and extend that if possible.
This generalizes the special case custom lowering of extloads
R600 has been using to work around this problem.
This also happens to fix a bug that would incorrectly use more
aligned loads than should be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225925 91177308-0d34-0410-b5e6-96231b3b80d8
The backend now assumes that all immediates are integers. This allows
us to simplify immediate handling code, becasue we no longer need to
handle fp and integer immediates differently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225844 91177308-0d34-0410-b5e6-96231b3b80d8
There are some operands which can take either immediates or registers
and we were previously using different register class to distinguish
between operands that could take immediates and those that could not.
This patch switches to using RegisterOperands which should simplify the
backend by reducing the number of register classes and also make it
easier to implement the assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225662 91177308-0d34-0410-b5e6-96231b3b80d8
Its functionality has been replaced by calling
SIInstrInfo::legalizeOperands() from
SIISelLowering::AdjstInstrPostInstrSelection() and running the
SIFoldOperands and SIShrinkInstructions passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225445 91177308-0d34-0410-b5e6-96231b3b80d8
type (in addition to the memory type).
The *LoadExt* legalization handling used to only have one type, the
memory type. This forced users to assume that as long as the extload
for the memory type was declared legal, and the result type was legal,
the whole extload was legal.
However, this isn't always the case. For instance, on X86, with AVX,
this is legal:
v4i32 load, zext from v4i8
but this isn't:
v4i64 load, zext from v4i8
Whereas v4i64 is (arguably) legal, even without AVX2.
Note that the same thing was done a while ago for truncstores (r46140),
but I assume no one needed it yet for extloads, so here we go.
Calls to getLoadExtAction were changed to add the value type, found
manually in the surrounding code.
Calls to setLoadExtAction were mechanically changed, by wrapping the
call in a loop, to match previous behavior. The loop iterates over
the MVT subrange corresponding to the memory type (FP vectors, etc...).
I also pulled neighboring setTruncStoreActions into some of the loops;
those shouldn't make a difference, as the additional types are illegal.
(e.g., i128->i1 truncstores on PPC.)
No functional change intended.
Differential Revision: http://reviews.llvm.org/D6532
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225421 91177308-0d34-0410-b5e6-96231b3b80d8
Use VGPR_32 register class instead. These two register classes were
identical and having separate classes was causing
SIInstrInfo::isLegalOperands() to be overly conservative in some cases.
This change is necessary to prevent future paches from missing a folding
opportunity in fneg-fabs.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225382 91177308-0d34-0410-b5e6-96231b3b80d8
Extend the existing code which handles this for zext. This makes this
more useful for targets with ZeroOrNegativeOne BooleanContent and
obsoletes a custom combine SI uses for i1 setcc (sext(i1), 0, setne)
since the constant will now be shrunk to i1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224691 91177308-0d34-0410-b5e6-96231b3b80d8
This is nice for the instruction patterns, but it complicates
min / max matching. The select doesn't have the correct type and would
require looking through the bitcasts for the real float operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224092 91177308-0d34-0410-b5e6-96231b3b80d8
This s_mov_b32 will write to a virtual register from the M0Reg
class and all the ds instructions now take an extra M0Reg explicit
argument.
This change is necessary to prevent issues with the scheduler
mixing together instructions that expect different values in the m0
registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222583 91177308-0d34-0410-b5e6-96231b3b80d8