The default op indices frmo TargetInstrInfo::findCommutedOpIndices are being commuted so we don't need to do this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227689 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds shuffle mask decodes for integer zero extends (pmovzx** and movq xmm,xmm) and scalar float/double loads/moves (movss/movsd).
Also adds shuffle mask decodes for integer loads (movd/movq).
Differential Revision: http://reviews.llvm.org/D7228
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227688 91177308-0d34-0410-b5e6-96231b3b80d8
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.
This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.
I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.
With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227685 91177308-0d34-0410-b5e6-96231b3b80d8
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227669 91177308-0d34-0410-b5e6-96231b3b80d8
In the large code model, we now put __chkstk in %r11 before calling it.
Refactor the code so that we only do this once. Simplify things by using
__chkstk_ms instead of __chkstk on cygming. We already use that symbol
in the prolog emission, and it simplifies our logic.
Second half of PR18582.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227519 91177308-0d34-0410-b5e6-96231b3b80d8
This is just an alias for CALL64pcrel32, and we can just use that opcode
with explicit defs in the MI.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227508 91177308-0d34-0410-b5e6-96231b3b80d8
win64: Call __chkstk through a register with the large code model
Fixes half of PR18582. True dynamic allocas will still have a
CALL64pcrel32 which will fail.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D7267
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227503 91177308-0d34-0410-b5e6-96231b3b80d8
The use of the DbgLoc in FastISel is probably something we should fix.
It's prone to leaking the wrong location into instructions - we should
have a clear chain of custody from the debug location of an IR
Instruction to that of a MachineInstr to avoid such leakage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227481 91177308-0d34-0410-b5e6-96231b3b80d8
For large stack offsets the compiler generates multiple immediate mode
sub/add instructions in the prologue/epilogue. This patch makes the
compiler place the final amount to be added/subtracted into a register,
which is then added/substracted with a single operation.
Differential Revision: http://reviews.llvm.org/D7226
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227458 91177308-0d34-0410-b5e6-96231b3b80d8
Reduce integer multiplication by a constant of the form k*2^c, where k is in {3,5,9} into a lea + shl. Previously it was only done for imulq on 64-bit platforms, but it makes sense for imull and 32-bit as well.
Differential Revision: http://reviews.llvm.org/D7196
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227308 91177308-0d34-0410-b5e6-96231b3b80d8
This includes two things:
1) Fix TCRETURNdi and TCRETURN64di patterns to check the right thing (LP64 as opposed to target bitness).
2) Allow LEA64_32 in MatchingStackOffset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227307 91177308-0d34-0410-b5e6-96231b3b80d8
By Asaf Badouh and Elena Demikhovsky
Added special nodes for rounding: FMADD_RND, FMSUB_RND..
It will prevent merge between nodes with rounding and other standard nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227303 91177308-0d34-0410-b5e6-96231b3b80d8
For ordered, unordered, equal and not-equal tests, packed float and double comparison instructions can be safely commuted without affecting the results. This patch checks the comparison mode of the (v)cmpps + (v)cmppd instructions and commutes the result if it can.
Differential Revision: http://reviews.llvm.org/D7178
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227145 91177308-0d34-0410-b5e6-96231b3b80d8
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227113 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes the following miscompile:
define void @sqrtsd(<2 x double> %a) nounwind uwtable ssp {
%0 = tail call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %a) nounwind
%a0 = extractelement <2 x double> %0, i32 0
%conv = fptrunc double %a0 to float
%a1 = extractelement <2 x double> %0, i32 1
%conv3 = fptrunc double %a1 to float
tail call void @callee2(float %conv, float %conv3) nounwind
ret void
}
Current codegen:
sqrtsd %xmm0, %xmm1 ## high element of %xmm1 is undef here
xorps %xmm0, %xmm0
cvtsd2ss %xmm1, %xmm0
shufpd $1, %xmm1, %xmm1
cvtsd2ss %xmm1, %xmm1 ## operating on undef value
jmp _callee
This is a continuation of http://llvm.org/viewvc/llvm-project?view=revision&revision=224624 ( http://reviews.llvm.org/D6330 )
which was itself a continuation of r167064 ( http://llvm.org/viewvc/llvm-project?view=revision&revision=167064 ).
All of these patches are partial fixes for PR14221 ( http://llvm.org/bugs/show_bug.cgi?id=14221 );
this should be the final patch needed to resolve that bug.
Differential Revision: http://reviews.llvm.org/D6885
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227111 91177308-0d34-0410-b5e6-96231b3b80d8
- Added KSHIFTB/D/Q for skx
- Added KORTESTB/D/Q for skx
- Fixed store operation for v8i1 type for KNL
- Store size of v8i1, v4i1 and v2i1 are changed to 8 bits
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227043 91177308-0d34-0410-b5e6-96231b3b80d8
Handle the poor codegen for i64/x86xmm->v2i64 (%mm -> %xmm) moves. Instead of
using stack store/load pair to do the job, use scalar_to_vector directly, which
in the MMX case can use movq2dq. This was the current behavior prior to
improvements for vector legalization of extloads in r213897.
This commit fixes the regression and as a side-effect also remove some
unnecessary shuffles.
In the new attached testcase, we go from:
pshufw $-18, (%rdi), %mm0
movq %mm0, -8(%rsp)
movq -8(%rsp), %xmm0
pshufd $-44, %xmm0, %xmm0
movd %xmm0, %eax
...
To:
pshufw $-18, (%rdi), %mm0
movq2dq %mm0, %xmm0
movd %xmm0, %eax
...
Differential Revision: http://reviews.llvm.org/D7126
rdar://problem/19413324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226953 91177308-0d34-0410-b5e6-96231b3b80d8
This mostly reverts commit r222062 and replaces it with a new enum. At
some point this enum will grow at least for other MSVC EH personalities.
Also beefs up the way we were sniffing the personality function.
Previously we would emit the Itanium LSDA despite using
__C_specific_handler.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6987
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226920 91177308-0d34-0410-b5e6-96231b3b80d8
Minor tweak now that D7042 is complete, we can enable stack folding for (V)MOVDDUP and do proper testing.
Added missing AVX ymm folding patterns and fixed alignment for AVX VMOVSLDUP / VMOVSHDUP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226873 91177308-0d34-0410-b5e6-96231b3b80d8
The problem occurs when after vectorization we have type
<2 x i32>. This type is promoted to <2 x i64> and then requires
additional efforts for expanding loads and truncating stores.
I added EXPAND / TRUNCATE attributes to the masked load/store
SDNodes. The code now contains additional shuffles.
I've prepared changes in the cost estimation for masked memory
operations, it will be submitted separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226808 91177308-0d34-0410-b5e6-96231b3b80d8