This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154011 91177308-0d34-0410-b5e6-96231b3b80d8
fire if anything ever invalidates the assumption of a terminator
instruction being unchanged throughout the routine.
I've convinced myself that the current definition of simplification
precludes such a transformation, so I think getting some asserts
coverage that we don't violate this agreement is sufficient to make this
code safe for the foreseeable future.
Comments to the contrary or other suggestions are of course welcome. =]
The bots are now happy with this code though, so it appears the bug here
has indeed been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153401 91177308-0d34-0410-b5e6-96231b3b80d8
list. This is a bad idea. ;] I'm hopeful this is the bug that's showing
up with the MSVC bots, but we'll see.
It is definitely unnecessary. InstSimplify won't do anything to
a terminator instruction, we don't need to even include it in the
iteration range. We can also skip the now dead terminator check,
although I've made it an assert to help document that this is an
important invariant.
I'm still a bit queasy about this because there is an implicit
assumption that the terminator instruction cannot be RAUW'ed by the
simplification code. While that appears to be true at the moment, I see
no guarantee that would ensure it remains true in the future. I'm
looking at the cleanest way to solve that...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153399 91177308-0d34-0410-b5e6-96231b3b80d8
bit simpler by handling a common case explicitly.
Also, refactor the implementation to use a worklist based walk of the
recursive users, rather than trying to use value handles to detect and
recover from RAUWs during the recursive descent. This fixes a very
subtle bug in the previous implementation where degenerate control flow
structures could cause mutually recursive instructions (PHI nodes) to
collapse in just such a way that From became equal to To after some
amount of recursion. At that point, we hit the inf-loop that the assert
at the top attempted to guard against. This problem is defined away when
not using value handles in this manner. There are lots of comments
claiming that the WeakVH will protect against just this sort of error,
but they're not accurate about the actual implementation of WeakVHs,
which do still track RAUWs.
I don't have any test case for the bug this fixes because it requires
running the recursive simplification on unreachable phi nodes. I've no
way to either run this or easily write an input that triggers it. It was
found when using instruction simplification inside the inliner when
running over the nightly test-suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153393 91177308-0d34-0410-b5e6-96231b3b80d8
Renamed methods caseBegin, caseEnd and caseDefault with case_begin, case_end, and case_default.
Added some notes relative to case iterators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152532 91177308-0d34-0410-b5e6-96231b3b80d8
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152297 91177308-0d34-0410-b5e6-96231b3b80d8
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149481 91177308-0d34-0410-b5e6-96231b3b80d8
- Walking over pred_begin/pred_end is an expensive operation.
- PHINodes contain a value for each predecessor anyway.
- While it may look like we used to save a few iterations with the set,
be aware that getIncomingValueForBlock does a linear search on
the values of the phi node.
- Another -5% on ARMDisassembler.cpp (Release build). This was the last
entry in the profile that was obviously wasting time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145937 91177308-0d34-0410-b5e6-96231b3b80d8
weak variable are compiled by different compilers, such as GCC and LLVM, while
LLVM may increase the alignment to the preferred alignment there is no reason to
think that GCC will use anything more than the ABI alignment. Since it is the
GCC version that might end up in the final program (as the linkage is weak), it
is wrong to increase the alignment of loads from the global up to the preferred
alignment as the alignment might only be the ABI alignment.
Increasing alignment up to the ABI alignment might be OK, but I'm not totally
convinced that it is. It seems better to just leave the alignment of weak
globals alone.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145413 91177308-0d34-0410-b5e6-96231b3b80d8
instructions.
This doesn't introduce any optimizations we weren't doing before (except
potentially due to pass ordering issues), now passes will eliminate them sooner
as part of their own cleanups.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142787 91177308-0d34-0410-b5e6-96231b3b80d8
promoting allocas to preferred alignments that exceed the natural
alignment. This avoids some potentially expensive dynamic stack realignments.
The natural stack alignment is set in target data strings via the "S<size>"
option. Size is in bits and must be a multiple of 8. The natural stack alignment
defaults to "unspecified" (represented by a zero value), and the "unspecified"
value does not prevent any alignment promotions. Target maintainers that care
about avoiding promotions should explicitly add the "S<size>" option to their
target data strings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141599 91177308-0d34-0410-b5e6-96231b3b80d8
"Reinstate r133435 and r133449 (reverted in r133499) now that the clang
self-hosted build failure has been fixed (r133512)."
Due to some additional warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133700 91177308-0d34-0410-b5e6-96231b3b80d8
Change PHINodes to store simple pointers to their incoming basic blocks,
instead of full-blown Uses.
Note that this loses an optimization in SplitCriticalEdge(), because we
can no longer walk the use list of a BasicBlock to find phi nodes. See
the comment I removed starting "However, the foreach loop is slow for
blocks with lots of predecessors".
Extend replaceAllUsesWith() on a BasicBlock to also update any phi
nodes in the block's successors. This mimics what would have happened
when PHINodes were proper Users of their incoming blocks. (Note that
this only works if OldBB->replaceAllUsesWith(NewBB) is called when
OldBB still has a terminator instruction, so it still has some
successors.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133435 91177308-0d34-0410-b5e6-96231b3b80d8
I also changed -simplifycfg, -jump-threading and -codegenprepare to use this to produce slightly better code without any extra cleanup passes (AFAICT this was the only place in -simplifycfg where now-dead conditions of replaced terminators weren't being cleaned up). The only other user of this function is -sccp, but I didn't read that thoroughly enough to figure out whether it might be holding pointers to instructions that could be deleted by this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131855 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-commits. (Not sure why it only breaks on Windows; maybe it has
something to do with the iterator representation...)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128802 91177308-0d34-0410-b5e6-96231b3b80d8
after the given instruction; make sure to handle that case correctly.
(It's difficult to trigger; the included testcase involves a dead
block, but I don't think that's a requirement.)
While I'm here, get rid of the unnecessary warning about
SimplifyInstructionsInBlock, since it should work correctly as far as I know.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128782 91177308-0d34-0410-b5e6-96231b3b80d8
itself without going via a phi node then we could return false here in
spite of making a change. Also, tweak the comment because this method
can (and always could) return true without deleting the original phi node.
For example, if the phi node was used by a read-only invoke instruction
which is used by another phi node phi2 which is only used by and only uses
the invoke, then phi2 would be deleted but not the invoke instruction and
not the original phi node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126129 91177308-0d34-0410-b5e6-96231b3b80d8
should be that if the phi is used by a side-effect free instruction with
no uses then the phi and the instruction now get zapped (checked by the
unittest).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126124 91177308-0d34-0410-b5e6-96231b3b80d8
test for that. With this change, test/CodeGen/X86/codegen-dce.ll no longer finds
any instructions to DCE, so delete the test.
Also renamed J and JP to I and IP in RecursivelyDeleteDeadPHINode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126088 91177308-0d34-0410-b5e6-96231b3b80d8
they all ready do). This removes two dominator recomputations prior to isel,
which is a 1% improvement in total llc time for 403.gcc.
The only potentially suspect thing is making GCStrategy recompute dominators if
it used a custom lowering strategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123064 91177308-0d34-0410-b5e6-96231b3b80d8
is trivially dead, since these have side effects. This makes the
(misnamed) MemoryUseIntrinsic class dead, so remove it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120382 91177308-0d34-0410-b5e6-96231b3b80d8
- Eliminate redundant successors.
- Convert an indirectbr with one successor into a direct branch.
Also, generalize SimplifyCFG to be able to be run on a function entry block.
It knows quite a few simplifications which are applicable to the entry
block, and it only needs a few checks to avoid trouble with the entry block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111060 91177308-0d34-0410-b5e6-96231b3b80d8
it *changing* the things it replaces, not just causing them
to drop to null. There is no functionality change yet, but
this is required for a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108414 91177308-0d34-0410-b5e6-96231b3b80d8
and T->isPointerTy(). Convert most instances of the first form to the second form.
Requested by Chris.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96344 91177308-0d34-0410-b5e6-96231b3b80d8
The testcase from pr6198 does not crash for me -- I don't know what's up with
that -- so I'm not adding it to the tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94984 91177308-0d34-0410-b5e6-96231b3b80d8
unconditionally. Besides checking the offset, also check that the underlying
object is aligned as much as the load itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94875 91177308-0d34-0410-b5e6-96231b3b80d8
RecursivelyDeleteDeadPHINode, and DeleteDeadPHIs return a flag
indicating whether they made any changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92732 91177308-0d34-0410-b5e6-96231b3b80d8
llvm.invariant.start to be used without necessarily being paired with a call
to llvm.invariant.end. If you run the entire optimization pipeline then such
calls are in fact deleted (adce does it), but that's actually a good thing since
we probably do want them to be zapped late in the game. There should really be
an integration test that checks that the llvm.invariant.start call lasts long
enough that all passes that do interesting things with it get to do their stuff
before it is deleted. But since no passes do anything interesting with it yet
this will have to wait for later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86840 91177308-0d34-0410-b5e6-96231b3b80d8
Remove LowerAllocations pass.
Update some more passes to treate free calls just like they were treating FreeInst.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85176 91177308-0d34-0410-b5e6-96231b3b80d8
Update all analysis passes and transforms to treat free calls just like FreeInst.
Remove RaiseAllocations and all its tests since FreeInst no longer needs to be raised.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84987 91177308-0d34-0410-b5e6-96231b3b80d8
to ignore readonly calls, and factor it out of instcombine so
that it can be used by other passes. Patch by Frits van Bommel!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73506 91177308-0d34-0410-b5e6-96231b3b80d8
the optimizers about this. For example, a readonly
function with no uses cannot be removed unless it is
also marked nounwind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71071 91177308-0d34-0410-b5e6-96231b3b80d8
CallbackVH, with fixes. allUsesReplacedWith need to
walk the def-use chains and invalidate all users of a
value that is replaced. SCEVs of users need to be
recalcualted even if the new value is equivalent. Also,
make forgetLoopPHIs walk def-use chains, since any
SCEV that depends on a PHI should be recalculated when
more information about that PHI becomes available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70927 91177308-0d34-0410-b5e6-96231b3b80d8
makes ScalarEvolution::deleteValueFromRecords, and it's code that
subtly needed to be called before ReplaceAllUsesWith, unnecessary.
It also makes ValueDeletionListener unnecessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70645 91177308-0d34-0410-b5e6-96231b3b80d8
of returning a list of pointers to Values that are deleted. This was
unsafe, because the pointers in the list are, by nature of what
RecursivelyDeleteDeadInstructions does, always dangling. Replace this
with a simple callback mechanism. This may eventually be removed if
all clients can reasonably be expected to use CallbackVH.
Use this to factor out the dead-phi-cycle-elimination code from LSR
utility function, and generalize it to use the
RecursivelyDeleteTriviallyDeadInstructions utility function.
This makes LSR more aggressive about eliminating dead PHI cycles;
adjust tests to either be less trivial or to simply expect fewer
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70636 91177308-0d34-0410-b5e6-96231b3b80d8