auto-simplier the transform most missed by early-cse is (zext X) != 0 -> X != 0.
This patch adds this transform and some related logic to InstructionSimplify
and removes some of the logic from instcombine (unfortunately not all because
there are several situations in which instcombine can improve things by making
new instructions, whereas instsimplify is not allowed to do this). At -O2 this
often results in more than 15% more simplifications by early-cse, and results in
hundreds of lines of bitcode being eliminated from the testsuite. I did see some
small negative effects in the testsuite, for example a few additional instructions
in three programs. One program, 483.xalancbmk, got an additional 35 instructions,
which seems to be due to a function getting an additional instruction and then
being inlined all over the place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123911 91177308-0d34-0410-b5e6-96231b3b80d8
to add/sub by doing the normal operation and then checking for overflow
afterwards. This generally relies on the DAG handling the later invalid
operations as well.
Fixes the 64-bit part of rdar://8622122 and rdar://8774702.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123908 91177308-0d34-0410-b5e6-96231b3b80d8
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123905 91177308-0d34-0410-b5e6-96231b3b80d8
Added a check for already live regs before claiming HighRegPressure.
Fixed a few cases of checking the wrong number of successors.
Added some tracing until these heuristics are better understood.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123892 91177308-0d34-0410-b5e6-96231b3b80d8
with an invalid type then split the result and perform the overflow check
normally.
Fixes the 32-bit parts of rdar://8622122 and rdar://8774702.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123864 91177308-0d34-0410-b5e6-96231b3b80d8
interval after an instruction. The leaveIntvAfter() method only adds liveness
from the instruction's boundary index to the inserted copy.
Ideally, SplitKit should be smarter about this, perhaps by combining useIntv()
and leaveIntvAfter() into one method that guarantees continuity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123858 91177308-0d34-0410-b5e6-96231b3b80d8
Region splitting includes loop splitting as a subset, and it is more generic.
The splitting heuristics for variables that are live in more than one block are
now:
1. Try to create a region that covers multiple basic blocks.
2. Try to create a new live range for each block with multiple uses.
3. Spill.
Steps 2 and 3 are similar to what the standard spiller is doing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123853 91177308-0d34-0410-b5e6-96231b3b80d8
by indvars through the scev expander.
trunc(add x, y) --> add(trunc x, y). Currently SCEV largely folds the other way
which is probably wrong, but preserved to minimize churn. Instcombine doesn't
do this fold either, demonstrating a missed optz'n opportunity on code doing
add+trunc+add.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123838 91177308-0d34-0410-b5e6-96231b3b80d8
of the floating point types less than 64-bits. It's somewhat of a temporary
hack but forces more accurate modeling of register pressure and results
in fewer spills.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123811 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, while this is the "right" thing to do, it breaks some ARM
asm parsing tests because MemMode5 and ThumbMemModeReg are ambiguous. This
is tricky to resolve since neither is a subset of the other.
XFAIL the test for now. The old way was broken in other ways, just ways
we didn't happen to be testing, and our ARM asm parsing is going to require
significant revisiting at a later point anyways.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123786 91177308-0d34-0410-b5e6-96231b3b80d8
are pointing to the same object, one pointer is accessing the entire
object, and the other is access has a non-zero size. This prevents
TBAA from kicking in and saying NoAlias in such cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123775 91177308-0d34-0410-b5e6-96231b3b80d8
Analyze the live range's behavior entering and leaving basic blocks. Compute an
interference pattern for each allocation candidate, and use SpillPlacement to
find an optimal region where that register can be live.
This code is still not enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123774 91177308-0d34-0410-b5e6-96231b3b80d8