init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139140 91177308-0d34-0410-b5e6-96231b3b80d8
Optimize chained bitcasts of the form A->B->A.
Undo r138722 and change isEliminableCastPair to allow this case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138756 91177308-0d34-0410-b5e6-96231b3b80d8
- use SmallVectorImpl& for the function argument.
- ignore the operands on the GEP, even if they aren't constant! Much as we
pretend the malloc succeeds, we pretend that malloc + whatever-you-GEP'd-by
is not null. It's magic!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136757 91177308-0d34-0410-b5e6-96231b3b80d8
Don't replace a gep/bitcast with 'undef' because that will form a "free(undef)"
which in turn means "unreachable". What we wanted was a no-op. Instead, analyze
the whole tree and look for all the instructions we need to delete first, then
delete them second, not relying on the use_list to stay consistent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136752 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136589 91177308-0d34-0410-b5e6-96231b3b80d8
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8
an assert on Darwin llvm-gcc builds.
Assertion failed: (castIsValid(op, S, Ty) && "Invalid cast!"), function Create, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/build.llvm-gcc-i386-darwin9-RA/llvm.src/lib/VMCore/Instructions.cpp, li\
ne 2067.
etc.
http://smooshlab.apple.com:8013/builders/llvm-gcc-i386-darwin9-RA/builds/2354
--- Reverse-merging r134893 into '.':
U include/llvm/Target/TargetData.h
U include/llvm/DerivedTypes.h
U tools/bugpoint/ExtractFunction.cpp
U unittests/Support/TypeBuilderTest.cpp
U lib/Target/ARM/ARMGlobalMerge.cpp
U lib/Target/TargetData.cpp
U lib/VMCore/Constants.cpp
U lib/VMCore/Type.cpp
U lib/VMCore/Core.cpp
U lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Instrumentation/ProfilingUtils.cpp
U lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/CodeGen/SjLjEHPrepare.cpp
--- Reverse-merging r134888 into '.':
G include/llvm/DerivedTypes.h
U include/llvm/Support/TypeBuilder.h
U include/llvm/Intrinsics.h
U unittests/Analysis/ScalarEvolutionTest.cpp
U unittests/ExecutionEngine/JIT/JITTest.cpp
U unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
U unittests/VMCore/PassManagerTest.cpp
G unittests/Support/TypeBuilderTest.cpp
U lib/Target/MBlaze/MBlazeIntrinsicInfo.cpp
U lib/Target/Blackfin/BlackfinIntrinsicInfo.cpp
U lib/VMCore/IRBuilder.cpp
G lib/VMCore/Type.cpp
U lib/VMCore/Function.cpp
G lib/VMCore/Core.cpp
U lib/VMCore/Module.cpp
U lib/AsmParser/LLParser.cpp
U lib/Transforms/Utils/CloneFunction.cpp
G lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Utils/InlineFunction.cpp
U lib/Transforms/Instrumentation/GCOVProfiling.cpp
U lib/Transforms/Scalar/ObjCARC.cpp
U lib/Transforms/Scalar/SimplifyLibCalls.cpp
U lib/Transforms/Scalar/MemCpyOptimizer.cpp
G lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/Transforms/IPO/ArgumentPromotion.cpp
U lib/Transforms/InstCombine/InstCombineCompares.cpp
U lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
U lib/Transforms/InstCombine/InstCombineCalls.cpp
U lib/CodeGen/DwarfEHPrepare.cpp
U lib/CodeGen/IntrinsicLowering.cpp
U lib/Bitcode/Reader/BitcodeReader.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134949 91177308-0d34-0410-b5e6-96231b3b80d8
This tightens up checking for overflow in alloca sizes, based on feedback
from Duncan and John about the change in r132926.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134749 91177308-0d34-0410-b5e6-96231b3b80d8
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133412 91177308-0d34-0410-b5e6-96231b3b80d8
might overflow. Re-typing the alloca to a larger type (e.g. double)
hoists a shift into the alloca, potentially exposing overflow in the
expression. rdar://problem/9265821
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132926 91177308-0d34-0410-b5e6-96231b3b80d8
crc32.[8|16|32] have been renamed to .crc32.32.[8|16|32] and
crc64.[8|16|32] have been renamed to .crc32.64.[8|64].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132163 91177308-0d34-0410-b5e6-96231b3b80d8
It's better to do this in codegen, mul.with.overflow(X, 2) is more canonical because it has only one use on "X".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131798 91177308-0d34-0410-b5e6-96231b3b80d8
As an example, the change to InstCombineCalls catches a common case where a call to a bitcast of a function is rewritten.
Chris, does this approach look reasonable?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131516 91177308-0d34-0410-b5e6-96231b3b80d8
This automagically provides a transform noticed by my super-optimizer
as occurring quite often: "rem x, (select cond, x, 1)" -> 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130694 91177308-0d34-0410-b5e6-96231b3b80d8
This obviously helps a lot if the division would be turned into a libcall
(think i64 udiv on i386), but div is also one of the few remaining instructions
on modern CPUs that become more expensive when the bitwidth gets bigger.
This also helps register pressure on i386 when dividing chars, divb needs
two 8-bit parts of a 16 bit register as input where divl uses two registers.
int foo(unsigned char a) { return a/10; }
int bar(unsigned char a, unsigned char b) { return a/b; }
compiles into (x86_64)
_foo:
imull $205, %edi, %eax
shrl $11, %eax
ret
_bar:
movzbl %dil, %eax
divb %sil, %al
movzbl %al, %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130615 91177308-0d34-0410-b5e6-96231b3b80d8
This shouldn't happen in practice because the icmp would be a constant.
Add a check so we don't miscompile code if something goes wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130446 91177308-0d34-0410-b5e6-96231b3b80d8
effective in avoiding recomputation of LCSSA form; the widespread
use of instsimplify (which looks through phi nodes) means it was
not preserving LCSSA form anyway; and instcombine is no longer
scheduled in the middle of the loop passes so this doesn't matter
anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130301 91177308-0d34-0410-b5e6-96231b3b80d8
when X has multiple uses. This is useful for exposing secondary optimizations,
but the X86 backend isn't ready for this when X has a single use. For example,
this can disable load folding.
This is inching towards resolving PR6627.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130238 91177308-0d34-0410-b5e6-96231b3b80d8
canonical, and generally leads to better code. Found while looking at
an article about saturating arithmetic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129545 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have a first-class way to represent unaligned loads, the unaligned
load intrinsics are superfluous.
First part of <rdar://problem/8460511>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129401 91177308-0d34-0410-b5e6-96231b3b80d8
space info. We crash with an assert in this case. This change checks that the
address space of the bitcasted pointer is the same as the gep ptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128884 91177308-0d34-0410-b5e6-96231b3b80d8
It's possible to craft an input that hits the recursion limits in a way
that SimplifyDemandedBits doesn't simplify the icmp but ComputeMaskedBits
can infer which bits are zero.
No test case as it depends on too many other things. Fixes PR9609.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128777 91177308-0d34-0410-b5e6-96231b3b80d8
- Localize the check if an icmp has one use to a place where we know we're
introducing something that's likely more expensive than a sext from i1.
- Add an assert to make sure a case that would lead to a miscompilation is
folded away earlier.
- Fix a typo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128744 91177308-0d34-0410-b5e6-96231b3b80d8
removes one use of X which helps it pass the many hasOneUse() checks.
In my analysis, this turns up very often where X = A >>exact B and that can't be
simplified unless X has one use (except by increasing the lifetime of A which is
generally a performance loss).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128373 91177308-0d34-0410-b5e6-96231b3b80d8
load and store reference same memory location, the memory location
is represented by getelementptr with two uses (load and store) and
the getelementptr's base is alloca with single use. At this point,
instructions from alloca to store can be removed.
(this pattern is generated when bitfield is accessed.)
For example,
%u = alloca %struct.test, align 4 ; [#uses=1]
%0 = getelementptr inbounds %struct.test* %u, i32 0, i32 0;[#uses=2]
%1 = load i8* %0, align 4 ; [#uses=1]
%2 = and i8 %1, -16 ; [#uses=1]
%3 = or i8 %2, 5 ; [#uses=1]
store i8 %3, i8* %0, align 4
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127565 91177308-0d34-0410-b5e6-96231b3b80d8
This happens a lot in clang-compiled C++ code because it adds overflow checks to operator new[]:
unsigned *foo(unsigned n) { return new unsigned[n]; }
We can optimize away the overflow check on 64 bit targets because (uint64_t)n*4 cannot overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127418 91177308-0d34-0410-b5e6-96231b3b80d8