Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201237 91177308-0d34-0410-b5e6-96231b3b80d8
* CPRCs may be allocated to co-processor registers or the stack – they may never be allocated to core registers
* When a CPRC is allocated to the stack, all other VFP registers should be marked as unavailable
The difference is only noticeable in rare cases where there are a large number of floating point arguments (e.g.
7 doubles + additional float, double arguments). Although it's probably still better to avoid vmov as it can cause
stalls in some older ARM cores. The other, more subtle benefit, is to minimize difference between the various
calling conventions.
rdar://16039676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201193 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a slightly overzealous destination register restriction for the
'without .w' alias. Add some explicit testcases.
rdar://16033140
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201173 91177308-0d34-0410-b5e6-96231b3b80d8
Similarly to the vshrn instructions, these are simple zext/sext + trunc
operations. Using normal LLVM IR should allow for better code, and more sharing
with the AArch64 backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201093 91177308-0d34-0410-b5e6-96231b3b80d8
For A- and R-class processors, r12 is not normally callee-saved, but is for
interrupt handlers. See AAPCS, 5.3.1.1, "Use of IP by the linker".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201089 91177308-0d34-0410-b5e6-96231b3b80d8
vshrn is just the combination of a right shift and a truncate (and the limits
on the immediate value actually mean the signedness of the shift doesn't
matter). Using that representation allows us to get rid of an ARM-specific
intrinsic, share more code with AArch64 and hopefully get better code out of
the mid-end optimisers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201085 91177308-0d34-0410-b5e6-96231b3b80d8
These methods normally call each other and it is really annoying if the
arguments are in different order. The more common rule was that the arguments
specific to call are first (GV, Encoding, Suffix) and the auxiliary objects
(Mang, TM) come after. This patch changes the exceptions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201044 91177308-0d34-0410-b5e6-96231b3b80d8
It is never null and it is not used in casts, so there is no reason to use a
pointer. This matches how we pass TM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201025 91177308-0d34-0410-b5e6-96231b3b80d8
According to the AAPCS, when a CPRC is allocated to the stack, all other
VFP registers should be marked as unavailable.
I have also modified the rules for allocating non-CPRCs to the stack, to make
it more explicit that all GPRs must be made unavailable. I cannot think of a
case where the old version would produce incorrect answers, so there is no test
for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200970 91177308-0d34-0410-b5e6-96231b3b80d8
In a previous commit (r199818) we added a const_cast to an existing
subtarget info instead of creating a new one so that we could reuse
it when creating the TargetAsmParser for parsing inline assembly.
This cast was necessary because we needed to reuse the existing STI
to avoid generating incorrect code when the inline asm contained
mode-switching directives (e.g. .code 16).
The root cause of the failure was that there was an implicit sharing
of the STI between the parser and the MCCodeEmitter. To fix a
different but related issue, we now explicitly pass the STI to the
MCCodeEmitter (see commits r200345-r200351).
The const_cast is no longer necessary and we can now create a fresh
STI for the inline asm parser to use.
Differential Revision: http://llvm-reviews.chandlerc.com/D2709
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200929 91177308-0d34-0410-b5e6-96231b3b80d8
In Thumb1 mode, bl instruction might be selected for branches between
basic blocks in the function if the offset is greater than 2KB.
However, this might cause SEGV because the destination symbol
is not marked as thumb function and the execution mode will be reset
to ARM mode.
Since we are sure that these symbols are in the same data fragment, we
can simply resolve these local symbols, and don't emit any relocation
information for this bl instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200842 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes the ldr-pseudo implementation to work when used in
inline assembly. The fix is to move arm assembler constant pools
from the ARMAsmParser class to the ARMTargetStreamer class.
Previously we kept the assembler generated constant pools in the
ARMAsmParser object. This does not work for inline assembly because
a new parser object is created for each blob of inline assembly.
This patch moves the constant pools to the ARMTargetStreamer class
so that the constant pool will remain alive for the entire code
generation process.
An ARMTargetStreamer class is now required for the arm backend.
There was no existing implementation for MachO, only Asm and ELF.
Instead of creating an empty MachO subclass, we decided to make the
ARMTargetStreamer a non-abstract class and provide default
(llvm_unreachable) implementations for the non constant-pool related
methods.
Differential Revision: http://llvm-reviews.chandlerc.com/D2638
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200777 91177308-0d34-0410-b5e6-96231b3b80d8
There was an extremely confusing proliferation of LLVM intrinsics to implement
the vacge & vacgt instructions. This combines them all into two polymorphic
intrinsics, shared across both backends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200768 91177308-0d34-0410-b5e6-96231b3b80d8
Missing braces on if meant we inserted both ARM and Thumb load for a litpool
entry. This didn't end well.
rdar://problem/15959157
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200752 91177308-0d34-0410-b5e6-96231b3b80d8
Some of the SHA instructions take a scalar i32 as one argument (largely because
they work on 160-bit hash fragments). This wasn't reflected in the IR
previously, with ARM and AArch64 choosing different types (<4 x i32> and <1 x
i32> respectively) which was ugly.
This makes all the affected intrinsics take a uniform "i32", allowing them to
become non-polymorphic at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200706 91177308-0d34-0410-b5e6-96231b3b80d8
The .object_arch directive indicates an alternative architecture to be specified
in the object file. The directive does *not* effect the enabled feature bits
for the object file generation. This is particularly useful when the code
performs runtime detection and would like to indicate a lower architecture as
the requirements than the actual instructions used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200451 91177308-0d34-0410-b5e6-96231b3b80d8
.movsp is an ARM unwinding directive that indicates to the unwinder that a
register contains an offset from the current stack pointer. If the offset is
unspecified, it defaults to zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200449 91177308-0d34-0410-b5e6-96231b3b80d8
This enhances the ARMAsmParser to handle .tlsdescseq directives. This is a
slightly special relocation. We must be able to generate them, but not consume
them in assembly. The relocation is meant to assist the linker in generating a
TLS descriptor sequence. The ELF target streamer is enhanced to append
additional fixups into the current segment and that is used to emit the new
R_ARM_TLS_DESCSEQ relocations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200448 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for tlsdesc relocations which are part of the ABI, marked as
experimental. These relocations permit the linker to perform TLS reference
optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200447 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for TLS CALL relocations. TLS CALL relocations are used to
indicate to the linker to generate appropriate entries to resolve TLS references
via an appropriate function invocation (e.g. __tls_get_addr(PLT)).
In order to accomodate the linker relaxation of the TLS access model for the
references (GD/LD -> IE, IE -> LE), the relocation addend must be incomplete.
This requires that the partial inplace value is also incomplete (i.e. 0). We
simply avoid the offset value calculation at the time of the fixup adjustment in
the ARM assembler backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200446 91177308-0d34-0410-b5e6-96231b3b80d8
After all hard work to implement the EHABI and with the test-suite
passing, it's time to turn it on by default and allow users to
disable it as a work-around while we fix the eventual bugs that show
up.
This commit also remove the -arm-enable-ehabi-descriptors, since we
want the tables to be printed every time the EHABI is turned on
for non-Darwin ARM targets.
Although MCJIT EHABI is not working yet (needs linking with the right
libraries), this commit also fixes some relocations on MCJIT regarding
the EH tables/lib calls, and update some tests to avoid using EH tables
when none are needed.
The EH tests in the test-suite that were previously disabled on ARM
now pass with these changes, so a follow-up commit on the test-suite
will re-enable them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200388 91177308-0d34-0410-b5e6-96231b3b80d8
The subtarget info is explicitly passed to the EncodeInstruction
method and we should use that subtarget info to influence any
encoding decisions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200350 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch we used getIntImmCost from TargetTransformInfo to determine if
a load of a constant should be converted to just a constant, but the threshold
for this was set to an arbitrary value. This value works well for the two
targets (X86 and ARM) that implement this target-hook, but it isn't
target-independent at all.
Now targets have the possibility to decide directly if this optimization should
be performed. The default value is set to false to preserve the current
behavior. The target hook has been moved to TargetLowering, which removed the
last use and need of TargetTransformInfo in SelectionDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200271 91177308-0d34-0410-b5e6-96231b3b80d8
This brings MC into line with GNU 'as' on ARM, and it brings the ARM
target into line with most other LLVM targets, which declare the
initial CFI state with addInitialFrameState().
Without this, functions generated with .cfi_startproc/endproc on ARM
will tend to cause GDB to abort with:
gdb/dwarf2-frame.c:1132: internal-error: Unknown CFA rule.
I've also tested this by comparing the output of "readelf -w" on the
object files produced by llvm-mc and gas when given the .s file added
here.
This change is part of addressing PR18636.
Differential Revision: http://llvm-reviews.chandlerc.com/D2597
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200255 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This commit gives an address mode to the PLD instruction. We
were getting an assertion failure in the frame lowering code
because we had code that was doing a pld of a stack allocated
address. The frame lowering was checking the address mode and
then asserting because pld had none defined.
This commit fixes pld for arm mode. There was a previous fix for
thumb mode in a separate commit. The commit for thumb mode
added a test in a separate file because it would otherwise fail
for arm. This commit moves the thumb test back into the prefetch.ll
file and adds the corresponding arm test.
Differential Revision: http://llvm-reviews.chandlerc.com/D2622
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200248 91177308-0d34-0410-b5e6-96231b3b80d8
If a complex expression was passed to the .word directive and the first part of
the directive failed to parse, a secondary diagnostic would be produced that
would clutter the error diagnostics. Improve the diagnostics by consuming the
remainder of the statement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200160 91177308-0d34-0410-b5e6-96231b3b80d8
This has a few advantages:
* Only targets that use a MCTargetStreamer have to worry about it.
* There is never a MCTargetStreamer without a MCStreamer, so we can use a
reference.
* A MCTargetStreamer can talk to the MCStreamer in its constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200129 91177308-0d34-0410-b5e6-96231b3b80d8