INT i8. These instructions are only for interpretation by disassemblers, not
for emission, so they do not as yet have patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78630 91177308-0d34-0410-b5e6-96231b3b80d8
and short. Well, it's kinda short. Definitely nasty and brutish.
The front-end generates the register/unregister calls into the SjLj runtime,
call-site indices and landing pad dispatch. The back end fills in the LSDA
with the call-site information provided by the front end. Catch blocks are
not yet implemented.
Built on Darwin and verified no llvm-core "make check" regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78625 91177308-0d34-0410-b5e6-96231b3b80d8
instead of syntactically as a string. This means that it keeps track of the
segment, section, flags, etc directly and asmprints them in the right format.
This also includes parsing and validation support for llvm-mc and
"attribute(section)", so we should now start getting errors about invalid
section attributes from the compiler instead of the assembler on darwin.
Still todo:
1) Uniquing of darwin mcsections
2) Move all the Darwin stuff out to MCSectionMachO.[cpp|h]
3) there are a few FIXMEs, for example what is the syntax to get the
S_GB_ZEROFILL segment type?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78547 91177308-0d34-0410-b5e6-96231b3b80d8
bytes for F2 0F 38 and propagate. Add a FIXME for a set
of possibilities which correspond to intrinsics already used.
New test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78508 91177308-0d34-0410-b5e6-96231b3b80d8
Also, redefined MatchRegisterName to just return the register value or a
sentinel, to simplify the generated code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78504 91177308-0d34-0410-b5e6-96231b3b80d8
since they are in 64 bit mode with i64immSExt32 imms. JIT is not affected since
it handles both word absolute relocations in the same way
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78479 91177308-0d34-0410-b5e6-96231b3b80d8
- This doesn't actually improve the algorithm (its still linear), but the
generated (match) code is now fairly compact and table driven. Still need a
generic string matcher.
- The table still needs to be compressed, this is quite simple to do and should
shrink it to under 16k.
- This also simplifies and restructures the code to make the match classes more
explicit, in anticipation of resolving ambiguities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78461 91177308-0d34-0410-b5e6-96231b3b80d8
- Still not very sane, but a least its not 60k lines on X86. :)
- In terms of correctness, currently some things are hard wired for X86, and we
still don't properly resolve ambiguities (this is ignoring the instructions
we don't even match due to funny .td stuff or other corner cases).
The high level changes:
1. Represent tokens which are significant for matching explicitly as separate
operands. This uniformly handles not only the instruction mnemonic, but
also 'signficiant' syntax like the '*' in "call * ...".
2. Separate the matching of operands to an instruction from the construction of
the MCInst. In theory this can be done during matching, but since the number
of variations is small I think it makes sense to decompose the problems.
3. Improved a few of the mechanisms to at least successfully flatten / tokenize
the assembly strings for PowerPC and ARM.
4. The comment at the top of AsmMatcherEmitter.cpp explains the approach I'm
moving towards for handling ambiguous instructions. The high-bit is to infer
a partial ordering of the operand classes (and force the user to specify one
if we can't) and use that to resolve ambiguities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78378 91177308-0d34-0410-b5e6-96231b3b80d8
by aggressive chain operand optimization. UpdateNodeOperands
does not modify the node in place if it would result in
a node identical to an existing node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78297 91177308-0d34-0410-b5e6-96231b3b80d8
a dirty hack and isn't need anymore since the last x86 code emitter patch)
- Add a target-dependent modifier to addend calculation
- Use R_X86_64_32S relocation for X86::reloc_absolute_word_sext
- Use getELFSectionFlags whenever possible
- fix getTextSection to use TLOF and emit the right text section
- Handle global emission for static ctors, dtors and Type::PointerTyID
- Some minor fixes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78176 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of awkwardly encoding calling-convention information with ISD::CALL,
ISD::FORMAL_ARGUMENTS, ISD::RET, and ISD::ARG_FLAGS nodes, TargetLowering
provides three virtual functions for targets to override:
LowerFormalArguments, LowerCall, and LowerRet, which replace the custom
lowering done on the special nodes. They provide the same information, but
in a more immediately usable format.
This also reworks much of the target-independent tail call logic. The
decision of whether or not to perform a tail call is now cleanly split
between target-independent portions, and the target dependent portion
in IsEligibleForTailCallOptimization.
This also synchronizes all in-tree targets, to help enable future
refactoring and feature work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78142 91177308-0d34-0410-b5e6-96231b3b80d8
calls were originally put in place because errs() at one time was
not unbuffered, and these print routines are commonly used with errs()
for debugging. However, errs() is now properly unbuffered, so the
flush calls are no longer needed. This significantly reduces the
number of write(2) calls for regular asm printing when there are many
small functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78137 91177308-0d34-0410-b5e6-96231b3b80d8