Things got a little bit messy over the years and it is time for a little bit
spring cleaning.
This first commit is focused on the FastISel base class itself. It doxyfies all
comments, C++11fies the code where it makes sense, renames internal methods to
adhere to the coding standard, and clang-formats the files.
Reviewed by Eric
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217060 91177308-0d34-0410-b5e6-96231b3b80d8
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reinstates commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216982 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the target to disable target-independent instruction selection and
jump directly into the target-dependent instruction selection code.
This can be beneficial for targets, such as AArch64, which could emit much
better code, but never got a chance to do so, because the target-independent
instruction selector was able to find an instruction sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216947 91177308-0d34-0410-b5e6-96231b3b80d8
If an fmul was introduced by lowering, it wouldn't be folded
into a multiply by a constant since the earlier combine would
have replaced the fmul with the fadd.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216932 91177308-0d34-0410-b5e6-96231b3b80d8
Also fix a small copy-paste bug in X86ISelLowering where Chain should
have been used in place of DAG.getEntryToken().
Fixes PR20828.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216929 91177308-0d34-0410-b5e6-96231b3b80d8
This removes static initializers from the backends which generate this data, and also makes this struct match the other Tablegen generated structs in behaviour
Reviewed by Andy Trick and Chandler C
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216919 91177308-0d34-0410-b5e6-96231b3b80d8
When I recommitted r208640 (in r216898) I added an exclusion for TargetConstant
offsets, as there is no guarantee that a backend can handle them on generic
ADDs (even if it generates them during address-mode matching) -- and,
specifically, applying this transformation directly with TargetConstants caused
a self-hosting failure on PPC64. Ignoring all TargetConstants, however, is less
than ideal. Instead, for non-opaque constants, we can convert them into regular
constants for use with the generated ADD (or SUB).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216908 91177308-0d34-0410-b5e6-96231b3b80d8
I reverted r208640 in r209747 because r208640 broke self-hosting on PPC64. The
underlying cause of the failure is that pre-inc loads with increments
represented by ISD::TargetConstants were being transformed into ISD:::ADDs with
ISD::TargetConstant operands. PPC doesn't have a pattern for those, and so they
were selected as invalid r+r adds.
This recommits r208640, rebased and with an exclusion for ISD::TargetConstant
increments. This behavior seems correct, although in the future we might want
to ask the target to split out the indexing that uses ISD::TargetConstants.
Unfortunately, I don't yet have small test case where the relevant invalid
'add' instruction is not itself dead (and thus eliminated by
DeadMachineInstructionElim -- sometimes bugpoint is too good at removing things)
Original commit message (by Adam Nemet):
Right now the load may not get DCE'd because of the side-effect of updating
the base pointer.
This can happen if we lower a read-modify-write of an illegal larger type
(e.g. i48) such that the modification only affects one of the subparts (the
lower i32 part but not the higher i16 part). See the testcase.
In order to spot the dead load we need to revisit it when SimplifyDemandedBits
decided that the value of the load is masked off. This is the
CommitTargetLoweringOpt piece.
I checked compile time with ARM64 by sending SPEC bitcode files through llc.
No measurable change.
Fixes <rdar://problem/16031651>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216898 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If a variadic function body contains a musttail call, then we copy all
of the remaining register parameters into virtual registers in the
function prologue. We track the virtual registers through the function
body, and add them as additional registers to pass to the call. Because
this is all done in virtual registers, the register allocator usually
gives us good code. If the function does a call, however, it will have
to spill and reload all argument registers (ew).
Forwarding regparms on x86_32 is not implemented because most compilers
don't support varargs in 32-bit with regparms.
Reviewers: majnemer
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5060
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216780 91177308-0d34-0410-b5e6-96231b3b80d8
The code in SelectionDAG::getMemset for some reason assumes the value passed to
memset is an i32. This breaks the generated code for targets that only have
registers smaller than 32 bits because the value might get split into multiple
registers by the calling convention. See the test for the MSP430 target included
in the patch for an example.
This patch ensures that nothing is assumed about the type of the value. Instead,
the type is taken from the selected overload of the llvm.memset intrinsic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216716 91177308-0d34-0410-b5e6-96231b3b80d8
was marked custom. The target independent DAG combine has no way to know if
the shuffles it is introducing are ones that the target could support or not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216678 91177308-0d34-0410-b5e6-96231b3b80d8
Completes what was started in r216611 and r216623.
Used const refs instead of pointers; not sure if one is preferable to the other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216672 91177308-0d34-0410-b5e6-96231b3b80d8
The included test case would fail, because the MI PHI node would have two
operands from the same predecessor.
This problem occurs when a switch instruction couldn't be selected. This happens
always, because there is no default switch support for FastISel to begin with.
The problem was that FastISel would first add the operand to the PHI nodes and
then fall-back to SelectionDAG, which would then in turn add the same operands
to the PHI nodes again.
This fix removes these duplicate PHI node operands by reseting the
PHINodesToUpdate to its original state before FastISel tried to select the
instruction.
This fixes <rdar://problem/18155224>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216640 91177308-0d34-0410-b5e6-96231b3b80d8
Currently instructions are folded very aggressively for AArch64 into the memory
operation, which can lead to the use of killed operands:
%vreg1<def> = ADDXri %vreg0<kill>, 2
%vreg2<def> = LDRBBui %vreg0, 2
... = ... %vreg1 ...
This usually happens when the result is also used by another non-memory
instruction in the same basic block, or any instruction in another basic block.
This fix teaches hasTrivialKill to not only check the LLVM IR that the value has
a single use, but also to check if the register that represents that value has
already been used. This can happen when the instruction with the use was folded
into another instruction (in this particular case a load instruction).
This fixes rdar://problem/18142857.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216634 91177308-0d34-0410-b5e6-96231b3b80d8
FastEmitInst_ri was constraining the first operand without checking if it is
a virtual register. Use constrainOperandRegClass as all the other
FastEmitInst_* functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216613 91177308-0d34-0410-b5e6-96231b3b80d8
This teaches the AArch64 backend to deal with the operations required
to deal with the operations on v4f16 and v8f16 which are exposed by
NEON intrinsics, plus the add, sub, mul and div operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216555 91177308-0d34-0410-b5e6-96231b3b80d8
This combine is essentially combining target-specific nodes back into target
independent nodes that it "knows" will be combined yet again by a target
independent DAG combine into a different set of target-independent nodes that
are legal (not custom though!) and thus "ok". This seems... deeply flawed. The
crux of the problem is that we don't combine un-legalized shuffles that are
introduced by legalizing other operations, and thus we don't see a very
profitable combine opportunity. So the backend just forces the input to that
combine to re-appear.
However, for this to work, the conditions detected to re-form the unlegalized
nodes must be *exactly* right. Previously, failing this would have caused poor
code (if you're lucky) or a crasher when we failed to select instructions.
After r215611 we would fall back into the legalizer. In some cases, this just
"fixed" the crasher by produces bad code. But in the test case added it caused
the legalizer and the dag combiner to iterate forever.
The fix is to make the alignment checking in the x86 side of things match the
alignment checking in the generic DAG combine exactly. This isn't really a
satisfying or principled fix, but it at least make the code work as intended.
It also highlights that it would be nice to detect the availability of under
aligned loads for a given type rather than bailing on this optimization. I've
left a FIXME to document this.
Original commit message for r215611 which covers the rest of the chang:
[SDAG] Fix a case where we would iteratively legalize a node during
combining by replacing it with something else but not re-process the
node afterward to remove it.
In a truly remarkable stroke of bad luck, this would (in the test case
attached) end up getting some other node combined into it without ever
getting re-processed. By adding it back on to the worklist, in addition
to deleting the dead nodes more quickly we also ensure that if it
*stops* being dead for any reason it makes it back through the
legalizer. Without this, the test case will end up failing during
instruction selection due to an and node with a type we don't have an
instruction pattern for.
It took many million runs of the shuffle fuzz tester to find this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216537 91177308-0d34-0410-b5e6-96231b3b80d8
There's no need to do this if the user doesn't call va_start. In the
future, we're going to have thunks that forward these register
parameters with musttail calls, and they won't need these spills for
handling va_start.
Most of the test suite changes are adding va_start calls to existing
tests to keep things working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216294 91177308-0d34-0410-b5e6-96231b3b80d8
isPow2DivCheap
That name doesn't specify signed or unsigned.
Lazy as I am, I eventually read the function and variable comments. It turns out that this is strictly about signed div. But I discovered that the comments are wrong:
srl/add/sra
is not the general sequence for signed integer division by power-of-2. We need one more 'sra':
sra/srl/add/sra
That's the sequence produced in DAGCombiner. The first 'sra' may be removed when dividing by exactly '2', but that's a special case.
This patch corrects the comments, changes the name of the flag bit, and changes the name of the accessor methods.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D5010
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216237 91177308-0d34-0410-b5e6-96231b3b80d8
The FPv4-SP floating-point unit is generally referred to as
single-precision only, but it does have double-precision registers and
load, store and GPR<->DPR move instructions which operate on them.
This patch enables the use of these registers, the main advantage of
which is that we now comply with the AAPCS-VFP calling convention.
This partially reverts r209650, which added some AAPCS-VFP support,
but did not handle return values or alignment of double arguments in
registers.
This patch also adds tests for Thumb2 code generation for
floating-point instructions and intrinsics, which previously only
existed for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216172 91177308-0d34-0410-b5e6-96231b3b80d8
Store TargetSelectionDAGInfo as a pointer instead of a reference:
getSelectionDAGInfo() may not be implemented for certain backends
(e.g. it's not currently implemented for R600).
This bug is reported by UBSan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216129 91177308-0d34-0410-b5e6-96231b3b80d8
legalization stage. With those two optimizations, fewer signed/zero extension
instructions can be inserted, and then we can expose more opportunities to
Machine CSE pass in back-end.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216066 91177308-0d34-0410-b5e6-96231b3b80d8
Note: This was originally reverted to track down a buildbot error. This commit
exposed a latent bug that was fixed in r215753. Therefore it is reapplied
without any modifications.
I run it through SPEC2k and SPEC2k6 for AArch64 and it didn't introduce any new
regeressions.
Original commit message:
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216006 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the AArch64 backend to handle fadd, fsub, fmul and fdiv
operations on f16 (half-precision) types by promoting to f32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215891 91177308-0d34-0410-b5e6-96231b3b80d8
When combining a pair of shuffle nodes, check if the combined shuffle mask is
trivially Undef. In case, immediately fold that pair of shuffles to Undef.
The lack of checks for undef masks was the root-cause of a poor-codegen bug
in the dag combiner.
Example:
%1 = shufflevector <4 x i32> %A, <4 x i32> %B, <4 x i32> <i32 4, i32 1, i32 1, i32 6>
%2 = shufflevector <4 x i32> %1, <4 x i32> undef, <4 x i32> <i32 0, i32 4, i32 1, i32 6>
%3 = shufflevector <4 x i32> %2, <4 x i32> undef, <4 x i32> <i32 1, i32 5, i32 3, i32 3>
Before this patch, on x86 (with -mcpu=corei7) we failed to fold the entire
sequence to Undef value and therefore we generated:
shufps $-123, %xmm1, $xmm0
pshufd $-46, %xmm0, %xmm0
With this patch, the entire shuffle sequence is folded to Undef and no
shuffles are generated in the output assembly.
Added new test cases to test 'combine-vec-shuffle-5.ll'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215797 91177308-0d34-0410-b5e6-96231b3b80d8
As Jim pointed out this assert isn't really needed to test for correctness,
because the code right afterwards does the same check and falls-back to
SelectionDAG - as intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215735 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215673 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows a vector fneg of a bitcasted integer value to be optimized in the same way that we already optimize a scalar fneg. If the integer variable is a constant, we can precompute the result and not require any logic ops.
This patch is very similar to a fabs patch committed at r214892.
Differential Revision: http://reviews.llvm.org/D4852
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215646 91177308-0d34-0410-b5e6-96231b3b80d8
input node after manually adding it to the worklist and using CombineTo.
Once we use CombineTo the input node may have been deleted. Despite this
being *completely confusing* and somewhat broken, the only way to
"correctly" return from a DAG combine after potentially deleting the
input node is to return *that exact node*....
But really, this code should just never have used CombineTo. It won't do
what it wants (returning the node as mentioned above just causes the
combine to infloop). The correct way to combine away a casted load to
a load of the correct type is to RAUW the chain directly and then return
the loaded value to replace the actual value node.
I managed to find this with the vector shuffle fuzzer even though it
clearly has nothing at all to do with vector shuffles and rather those
happen to trigger a load of a constant pool that hits this combine *just
right*. I've included the test as it is small and a nice stress test
that the infrastructure isn't asserting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215622 91177308-0d34-0410-b5e6-96231b3b80d8
combining by replacing it with something else but not re-process the
node afterward to remove it.
In a truly remarkable stroke of bad luck, this would (in the test case
attached) end up getting some other node combined into it without ever
getting re-processed. By adding it back on to the worklist, in addition
to deleting the dead nodes more quickly we also ensure that if it
*stops* being dead for any reason it makes it back through the
legalizer. Without this, the test case will end up failing during
instruction selection due to an and node with a type we don't have an
instruction pattern for.
It took many million runs of the shuffle fuzz tester to find this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215611 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215588 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8