in the Ada testcase. Reverting this only covers up
the real problem, which is a nasty conceptual difficulty
in the phi elimination pass: when eliminating phi nodes
in landing pads, the register copies need to come before
the invoke, not at the end of the basic block which is
too late... See PR3784.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66826 91177308-0d34-0410-b5e6-96231b3b80d8
There is now a direct way from value-use-iterator to incoming block in PHINode's API.
This way we avoid the iterator->index->iterator trip, and especially the costly
getOperandNo() invocation. Additionally there is now an assertion that the iterator
really refers to one of the PHI's Uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62869 91177308-0d34-0410-b5e6-96231b3b80d8
- Use SplitBlockPredecessors to factor out common predecessors of the critical edge destination. This is disabled for now due to some regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61248 91177308-0d34-0410-b5e6-96231b3b80d8
wrappers around the interesting code and use an obscure iterator
abstraction that dates back many many years.
Move EraseDeadInstructions to Transforms/Utils and name it
RecursivelyDeleteTriviallyDeadInstructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60191 91177308-0d34-0410-b5e6-96231b3b80d8
performance in most cases on the Grawp tester, but does speed some
things up (like shootout/hash by 15%). This also doesn't impact
compile time in a noticable way on the Grawp tester.
It also, of course, gets the testcase it was designed for right :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60120 91177308-0d34-0410-b5e6-96231b3b80d8
heuristic: the value is already live at the new memory operation if
it is used by some other instruction in the memop's block. This is
cheap and simple to compute (moreso than full liveness).
This improves the new heuristic even more. For example, it cuts two
out of three new instructions out of 255.vortex:DbmFileInGrpHdr,
which is one of the functions that the heuristic regressed. This
overall eliminates another 40 instructions from 403.gcc and visibly
reduces register pressure in 255.vortex (though this only actually
ends up saving the 2 instructions from the whole program).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60084 91177308-0d34-0410-b5e6-96231b3b80d8
phrased in terms of liveness instead of as a horrible hack. :)
In pratice, this doesn't change the generated code for either
255.vortex or 403.gcc, but it could cause minor code changes in
theory. This is framework for coming changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60082 91177308-0d34-0410-b5e6-96231b3b80d8
-enable-smarter-addr-folding to llc) that gives CGP a better
cost model for when to sink computations into addressing modes.
The basic observation is that sinking increases register
pressure when part of the addr computation has to be available
for other reasons, such as having a use that is a non-memory
operation. In cases where it works, it can substantially reduce
register pressure.
This code is currently an overall win on 403.gcc and 255.vortex
(the two things I've been looking at), but there are several
things I want to do before enabling it by default:
1. This isn't doing any caching of results, so it is much slower
than it could be. It currently slows down release-asserts llc
by 1.7% on 176.gcc: 27.12s -> 27.60s.
2. This doesn't think about inline asm memory operands yet.
3. The cost model botches the case when the needed value is live
across the computation for other reasons.
I'll continue poking at this, and eventually turn it on as llcbeta.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60074 91177308-0d34-0410-b5e6-96231b3b80d8
optimize addressing modes. This allows us to optimize things like isel-sink2.ll
into:
movl 4(%esp), %eax
cmpb $0, 4(%eax)
jne LBB1_2 ## F
LBB1_1: ## TB
movl $4, %eax
ret
LBB1_2: ## F
movzbl 7(%eax), %eax
ret
instead of:
_test:
movl 4(%esp), %eax
cmpb $0, 4(%eax)
leal 4(%eax), %eax
jne LBB1_2 ## F
LBB1_1: ## TB
movl $4, %eax
ret
LBB1_2: ## F
movzbl 3(%eax), %eax
ret
This shrinks (e.g.) 403.gcc from 1133510 to 1128345 lines of .s.
Note that the 2008-10-16-SpillerBug.ll testcase is dubious at best, I doubt
it is really testing what it thinks it is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60068 91177308-0d34-0410-b5e6-96231b3b80d8
can recursively match things) and scales by 0 by ignoring them.
This triggers once in 403.gcc, saving 1 (!!!!) instruction in the
whole huge app.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60013 91177308-0d34-0410-b5e6-96231b3b80d8
into a new AddressingModeMatcher class. This makes it easier
to reason about and reduces passing around of stuff, but has
no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60012 91177308-0d34-0410-b5e6-96231b3b80d8
of apint codegen failure is the DAG combiner doing
the wrong thing because it was comparing MVT's using
< rather than comparing the number of bits. Removing
the < method makes this mistake impossible to commit.
Instead, add helper methods for comparing bits and use
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52098 91177308-0d34-0410-b5e6-96231b3b80d8
and better control the abstraction. Rename the type
to MVT. To update out-of-tree patches, the main
thing to do is to rename MVT::ValueType to MVT, and
rewrite expressions like MVT::getSizeInBits(VT) in
the form VT.getSizeInBits(). Use VT.getSimpleVT()
to extract a MVT::SimpleValueType for use in switch
statements (you will get an assert failure if VT is
an extended value type - these shouldn't exist after
type legalization).
This results in a small speedup of codegen and no
new testsuite failures (x86-64 linux).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52044 91177308-0d34-0410-b5e6-96231b3b80d8
several things that were neither in an anonymous namespace nor static
but not intended to be global.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51017 91177308-0d34-0410-b5e6-96231b3b80d8
When choosing between constraints with multiple options,
like "ir", test to see if we can use the 'i' constraint and
go with that if possible. This produces more optimal ASM in
all cases (sparing a register and an instruction to load it),
and fixes inline asm like this:
void test () {
asm volatile (" %c0 %1 " : : "imr" (42), "imr"(14));
}
Previously we would dump "42" into a memory location (which
is ok for the 'm' constraint) which would cause a problem
because the 'c' modifier is not valid on memory operands.
Isn't it great how inline asm turns 'missed optimization'
into 'compile failed'??
Incidentally, this was the todo in
PowerPC/2007-04-24-InlineAsm-I-Modifier.ll
Please do NOT pull this into Tak.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50315 91177308-0d34-0410-b5e6-96231b3b80d8