The SplitIndexingFromLoad changes exposed a latent isel bug in the PowerPC64
backend. We matched an immediate offset with STWX8 even though it only
supports register offset.
The culprit is the complex-pattern predicate, SelectAddrIdx, which decides
that if the offset is not ISD::Constant it must be a register.
Many thanks to Bill Schmidt for testing this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209219 91177308-0d34-0410-b5e6-96231b3b80d8
After discussion with Zoran, we have decided to temporarily revert this commit.
It's causing some difficult to resolve conflicts and we are under time pressure
to deliver an initial MIPS64r6 compiler.
We will re-apply an equivalent patch once the time pressure has passed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209211 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the results of a ComplexPattern check to be distributed to separate
named Operands, instead of the current system where all results must apply (and
match perfectly) with a single Operand.
For example, if "some_addrmode" is a ComplexPattern producing two results, you
can write:
def : Pat<(load (some_addrmode GPR64:$base, imm:$offset)),
(INST GPR64:$base, imm:$offset)>;
This should allow neater instruction definitions in TableGen that don't put all
possible aspects of addressing into a single operand, but are still usable with
relatively simple C++ CodeGen idioms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209206 91177308-0d34-0410-b5e6-96231b3b80d8
When multiple aliases overlap, the correct string to print can often be
determined purely by considering the InstAlias declarations in some particular
order. This allows the user to specify that order manually when desired,
without resorting to hacking around with the default lexicographical order on
Record instantiation, which is error-prone and ugly.
I was also mistaken about "add w2, w3, w4" being the same as "add w2, w3, w4,
uxtw". That's only true if Rn is the stack pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209199 91177308-0d34-0410-b5e6-96231b3b80d8
According to Intel Software Optimization Manual on Silvermont in some cases LEA
is better to be replaced with ADD instructions:
"The rule of thumb for ADDs and LEAs is that it is justified to use LEA
with a valid index and/or displacement for non-destructive destination purposes
(especially useful for stack offset cases), or to use a SCALE.
Otherwise, ADD(s) are preferable."
Differential Revision: http://reviews.llvm.org/D3826
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209198 91177308-0d34-0410-b5e6-96231b3b80d8
This workaround (presumably for ancient GDB) doesn't appear to be
required (GDB 7.5 seems to tolerate function definition DIEs in
namespace scope just fine).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209189 91177308-0d34-0410-b5e6-96231b3b80d8
Since we visit the whole list of subprograms for each CU at module
start, this is clearly true - don't test for the case, just assert it.
A few old test cases seemed to have incomplete subprogram lists, but any
attempt to reproduce them shows full subprogram lists that even include
entities that have been completely inlined and the out of line
definition removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209178 91177308-0d34-0410-b5e6-96231b3b80d8
When I refactored this in r208636 I accidentally caused this to be added
multiple times to each abstract subprogram (not accounting for the
deduplicating effect of the InlinedSubprogramDIEs set).
This got better in r208798 when the abstract definitions got the
attribute added to them at construction time, but still had the
redundant copies introduced in r208636.
This commit removes those excess DW_AT_inlines and relies solely on the
insertion in r208798.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209166 91177308-0d34-0410-b5e6-96231b3b80d8
The check in DwarfDebug::constructScopeDIE was meant to consider inlined
subroutines as any non-top-level scope that was a subprogram. Instead of
checking "not top level scope" it was checking if the /subprogram's/
scope was non-top-level.
Fix this and beef up a test case to demonstrate some of the missing
inlined_subroutines are no longer missing.
In the course of fixing this I also found that r208748 (with this fix)
found one /extra/ inlined_subroutine in concrete_out_of_line.ll due to
two inlined_subroutines having the same inlinedAt location. The previous
implementation was collapsing these into a single inlined subroutine.
I'm not sure what the original code was that created this .ll file so
I'm not sure if this actually happens in practice today. Since we
deliberately include column information to disambiguate two calls on the
same line, that may've addressed this bug in the frontend, but it's good
to know that workaround isn't necessary for this particular case
anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209165 91177308-0d34-0410-b5e6-96231b3b80d8
Currently the X86 backend doesn't support types larger than i128 very well. For
example an i192 multiply will assert in codegen when the 2nd argument is a constant and the constant got hoisted.
This fix changes the cost model to never hoist constants for types larger than
i128. Once the codegen issues have been resolved, the cost model can be updated
to allow also larger types.
This is related to <rdar://problem/16954938>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209162 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions TZCNT (requires BMI1) and LZCNT (requires LZCNT), always
provide the operand size as output if the input operand is zero.
We can take advantage of this knowledge during instruction selection
stage in order to simplify a few corner case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209159 91177308-0d34-0410-b5e6-96231b3b80d8
so that llvm-size will total up all the sections in the Berkeley format. This
allows for rough categorizations for Mach-O sections. And allows the total of
llvm-size’s Berkeley and System V formats to be the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209158 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When inserting an element that's coming from a vector load or a broadcast
of a vector (or scalar) load, combine the load into the insertps
instruction.
Added PerformINSERTPSCombine for the case where we need to fix the load
(load of a vector + insertps with a non-zero CountS).
Added patterns for the broadcasts.
Also added tests for SSE4.1, AVX, and AVX2.
Reviewers: delena, nadav, craig.topper
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3581
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209156 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out that not all the world is x86-64. Who knew?
I'll get to work on a more appropriate test case for this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209155 91177308-0d34-0410-b5e6-96231b3b80d8
For GOT relocations the addend should modify the offset to the
GOT entry, not the value of the entry itself. Teach RuntimeDyldMachO
to do The Right Thing here.
Fixes <rdar://problem/16961886>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209154 91177308-0d34-0410-b5e6-96231b3b80d8
The cost model conservatively assumes that it will always get scalarized and
that's about as good as we can get with the generic TTI; reasoning whether a
shuffle with an efficient lowering is available is hard. We can override that
conservative estimate for some targets in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209125 91177308-0d34-0410-b5e6-96231b3b80d8
- On ARM/ARM64 we get a vrev because the shuffle matching code is really smart. We still unroll anything that's not v4i32 though.
- On X86 we get a pshufb with SSSE3. Required more cleverness in isShuffleMaskLegal.
- On PPC we get a vperm for v8i16 and v4i32. v2i64 is unrolled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209123 91177308-0d34-0410-b5e6-96231b3b80d8