idea, but unfortunately necessary.
- Default to using 4-bytes for the LSDA pointer encoding to agree with the
encoded value in the CIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93753 91177308-0d34-0410-b5e6-96231b3b80d8
The CIE says that the LSDA point in the FDE section is an "sdata4". That's fine,
but we need it to actually be 4-bytes in the FDE for some platforms. Allow
individual platforms to decide for themselves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93616 91177308-0d34-0410-b5e6-96231b3b80d8
by allowing backends to override routines that will default
the JIT and Static code generation to an appropriate code model
for the architecture.
Should fix PR 5773.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91824 91177308-0d34-0410-b5e6-96231b3b80d8
incarnations), integrated into the MC framework.
The disassembler is table-driven, using a custom TableGen backend to
generate hierarchical tables optimized for fast decode. The disassembler
consumes MemoryObjects and produces arrays of MCInsts, adhering to the
abstract base class MCDisassembler (llvm/MC/MCDisassembler.h).
The disassembler is documented in detail in
- lib/Target/X86/Disassembler/X86Disassembler.cpp (disassembler runtime)
- utils/TableGen/DisassemblerEmitter.cpp (table emitter)
You can test the disassembler by running llvm-mc -disassemble for i386
or x86_64 targets. Please let me know if you encounter any problems
with it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91749 91177308-0d34-0410-b5e6-96231b3b80d8
The large code model is documented at
http://www.x86-64.org/documentation/abi.pdf and says that calls should
assume their target doesn't live within the 32-bit pc-relative offset
that fits in the call instruction.
To do this, we turn off the global-address->target-global-address
conversion in X86TargetLowering::LowerCall(). The first attempt at
this broke the lazy JIT because it can separate the movabs(imm->reg)
from the actual call instruction. The lazy JIT receives the address of
the movabs as a relocation and needs to record the return address from
the call; and then when that call happens, it needs to patch the
movabs with the newly-compiled target. We could thread the call
instruction into the relocation and record the movabs<->call mapping
explicitly, but that seems to require at least as much new
complication in the code generator as this change.
To fix this, we make lazy functions _always_ go through a call
stub. You'd think we'd only have to force lazy calls through a stub on
difficult platforms, but that turns out to break indirect calls
through a function pointer. The right fix for that is to distinguish
between calls and address-of operations on uncompiled functions, but
that's complex enough to leave for someone else to do.
Another attempt at this defined a new CALL64i pseudo-instruction,
which expanded to a 2-instruction sequence in the assembly output and
was special-cased in the X86CodeEmitter's emitInstruction()
function. That broke indirect calls in the same way as above.
This patch also removes a hack forcing Darwin to the small code model.
Without far-call-stubs, the small code model requires things of the
JITMemoryManager that the DefaultJITMemoryManager can't provide.
Thanks to echristo for lots of testing!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88984 91177308-0d34-0410-b5e6-96231b3b80d8
- Note, this is a gigantic hack, with the sole purpose of unblocking further
work on the assembler (its also possible to test the mathcer more completely
now).
- Despite being a hack, its actually good enough to work over all of 403.gcc
(although some encodings are probably incorrect). This is a testament to the
beauty of X86's MachineInstr, no doubt! ;)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80234 91177308-0d34-0410-b5e6-96231b3b80d8
pair instead of from a virtual method on TargetMachine. This cuts the final
ties of TargetAsmInfo to TargetMachine, meaning that MC can now use
TargetAsmInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78802 91177308-0d34-0410-b5e6-96231b3b80d8
Module*.
Also, dropped uses of TargetMachine where unnecessary. The only target which
still takes a TargetMachine& is Mips, I would appreciate it if someone would
normalize this to match other targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77918 91177308-0d34-0410-b5e6-96231b3b80d8
it is highly specific to the object file that will be generated in the end,
this introduces a new TargetLoweringObjectFile interface that is implemented
for each of ELF/MachO/COFF/Alpha/PIC16 and XCore.
Though still is still a brutal and ugly refactoring, this is a major step
towards goodness.
This patch also:
1. fixes a bunch of dangling pointer problems in the PIC16 backend.
2. disables the TargetLowering copy ctor which PIC16 was accidentally using.
3. gets us closer to xcore having its own crazy target section flags and
pic16 not having to shadow sections with its own objects.
4. fixes wierdness where ELF targets would set CStringSection but not
CStringSection_. Factor the code better.
5. fixes some bugs in string lowering on ELF targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77294 91177308-0d34-0410-b5e6-96231b3b80d8
--- Reverse-merging r75799 into '.':
U test/Analysis/PointerTracking
U include/llvm/Target/TargetMachineRegistry.h
U include/llvm/Target/TargetMachine.h
U include/llvm/Target/TargetRegistry.h
U include/llvm/Target/TargetSelect.h
U tools/lto/LTOCodeGenerator.cpp
U tools/lto/LTOModule.cpp
U tools/llc/llc.cpp
U lib/Target/PowerPC/PPCTargetMachine.h
U lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp
U lib/Target/PowerPC/PPCTargetMachine.cpp
U lib/Target/PowerPC/PPC.h
U lib/Target/ARM/ARMTargetMachine.cpp
U lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
U lib/Target/ARM/ARMTargetMachine.h
U lib/Target/ARM/ARM.h
U lib/Target/XCore/XCoreTargetMachine.cpp
U lib/Target/XCore/XCoreTargetMachine.h
U lib/Target/PIC16/PIC16TargetMachine.cpp
U lib/Target/PIC16/PIC16TargetMachine.h
U lib/Target/Alpha/AsmPrinter/AlphaAsmPrinter.cpp
U lib/Target/Alpha/AlphaTargetMachine.cpp
U lib/Target/Alpha/AlphaTargetMachine.h
U lib/Target/X86/X86TargetMachine.h
U lib/Target/X86/X86.h
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.h
U lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.h
U lib/Target/X86/X86TargetMachine.cpp
U lib/Target/MSP430/MSP430TargetMachine.cpp
U lib/Target/MSP430/MSP430TargetMachine.h
U lib/Target/CppBackend/CPPTargetMachine.h
U lib/Target/CppBackend/CPPBackend.cpp
U lib/Target/CBackend/CTargetMachine.h
U lib/Target/CBackend/CBackend.cpp
U lib/Target/TargetMachine.cpp
U lib/Target/IA64/IA64TargetMachine.cpp
U lib/Target/IA64/AsmPrinter/IA64AsmPrinter.cpp
U lib/Target/IA64/IA64TargetMachine.h
U lib/Target/IA64/IA64.h
U lib/Target/MSIL/MSILWriter.cpp
U lib/Target/CellSPU/SPUTargetMachine.h
U lib/Target/CellSPU/SPU.h
U lib/Target/CellSPU/AsmPrinter/SPUAsmPrinter.cpp
U lib/Target/CellSPU/SPUTargetMachine.cpp
U lib/Target/Mips/AsmPrinter/MipsAsmPrinter.cpp
U lib/Target/Mips/MipsTargetMachine.cpp
U lib/Target/Mips/MipsTargetMachine.h
U lib/Target/Mips/Mips.h
U lib/Target/Sparc/AsmPrinter/SparcAsmPrinter.cpp
U lib/Target/Sparc/SparcTargetMachine.cpp
U lib/Target/Sparc/SparcTargetMachine.h
U lib/ExecutionEngine/JIT/TargetSelect.cpp
U lib/Support/TargetRegistry.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75820 91177308-0d34-0410-b5e6-96231b3b80d8
- Which was already present in the module!
- I skipped this xform for Alpha, since it runs an extra pass during assembly
emission, but not when emitting assembly via the DumpAsm flag.
- No functionality change.
--
ddunbar@giles:llvm$ svn diff | grep '^- ' | sort | uniq -c
18 - PM.add(AsmPrinterCtor(ferrs(), *this, true));
18 - assert(AsmPrinterCtor && "AsmPrinter was not linked in");
18 - if (AsmPrinterCtor)
18 - if (DumpAsm) {
18 - }
ddunbar@giles:llvm$ svn diff | grep '^+ ' | sort | uniq -c
18 + addAssemblyEmitter(PM, OptLevel, true, ferrs());
18 + if (DumpAsm)
--
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75782 91177308-0d34-0410-b5e6-96231b3b80d8
from.
- This commit is almost entirely propogating the reference through the
TargetMachine subclasses' constructor calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75778 91177308-0d34-0410-b5e6-96231b3b80d8
make sure we're set to static codegen. Simplify the decision
tree of target->picstyle/picmode settings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75094 91177308-0d34-0410-b5e6-96231b3b80d8
- This more or less amounts to a revert of r65379. I'm curious to know what
happened that caused this variable to become unused.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74579 91177308-0d34-0410-b5e6-96231b3b80d8
implementation primarily differs from the former in that the asmprinter
doesn't make a zillion decisions about whether or not something will be
RIP relative or not. Instead, those decisions are made by isel lowering
and propagated through to the asm printer. To achieve this, we:
1. Represent RIP relative addresses by setting the base of the X86 addr
mode to X86::RIP.
2. When ISel Lowering decides that it is safe to use RIP, it lowers to
X86ISD::WrapperRIP. When it is unsafe to use RIP, it lowers to
X86ISD::Wrapper as before.
3. This removes isRIPRel from X86ISelAddressMode, representing it with
a basereg of RIP instead.
4. The addressing mode matching logic in isel is greatly simplified.
5. The asmprinter is greatly simplified, notably the "NotRIPRel" predicate
passed through various printoperand routines is gone now.
6. The various symbol printing routines in asmprinter now no longer infer
when to emit (%rip), they just print the symbol.
I think this is a big improvement over the previous situation. It does have
two small caveats though: 1. I implemented a horrible "no-rip" modifier for
the inline asm "P" constraint modifier. This is a short term hack, there is
a much better, but more involved, solution. 2. I had to xfail an
-aggressive-remat testcase because it isn't handling the use of RIP in the
constant-pool reading instruction. This specific test is easy to fix without
-aggressive-remat, which I intend to do next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74372 91177308-0d34-0410-b5e6-96231b3b80d8
C bindings. Change all the backend "Initialize" functions to have C linkage.
Change the "llvm/Config/Targets.def" header to use C-style comments to avoid
compile warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74026 91177308-0d34-0410-b5e6-96231b3b80d8
initialization of all targets (InitializeAllTargets.h) or assembler
printers (InitializeAllAsmPrinters.h). This is a step toward the
elimination of relinked object files, so that we can build normal
archives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73543 91177308-0d34-0410-b5e6-96231b3b80d8
Emission for globals, using the correct data sections
Function alignment can be computed for each target using TargetELFWriterInfo
Some small fixes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73201 91177308-0d34-0410-b5e6-96231b3b80d8