It turns out, all callsites of the simplifier are guarded by a check for
CallInst::getCalledFunction (i.e., to make sure the callee is direct).
This check wasn't done when trying to further optimize a simplified fortified
libcall, introduced by a refactoring in r225640.
Fix that, add a testcase, and document the requirement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225895 91177308-0d34-0410-b5e6-96231b3b80d8
a print method.
This was formulated on a bad idea, but sadly I didn't uncover how bad
this was until I got further down the path. I had hoped that we could
provide a low boilerplate way of printing analyses, but it just doesn't
seem like this really fits the needs of the analyses. Not all analyses
really want to do printing, and those that do don't all use the same
interface. Instead, with the new pass manager let's just take advantage
of the fact that creating an explicit printer pass like the LCG has is
pretty low boilerplate already and rely on that for testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225861 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r225852, it was a bad idea.
MachineReg should always be a physical register. If it isn't this DebugLoc
shouldn't have been created in the first place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225857 91177308-0d34-0410-b5e6-96231b3b80d8
I'm adding generic analysis printing utility pass support which will
require such a method (or a specialization) so this will let the
existing printing logic satisfy that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225854 91177308-0d34-0410-b5e6-96231b3b80d8
emitDebugLocValue() into DwarfExpression.
Ought to be NFC, but it actually uncovered a bug in the debug-loc-asan.ll
testcase. The testcase checks that the address of variable "y" is stored
at [RSP+16], which also lines up with the comment.
It also check(ed) that the *value* of "y" is stored in RDI before that,
but that is actually incorrect, since RDI is the very value that is
stored in [RSP+16]. Here's the assembler output:
movb 2147450880(%rcx), %r8b
#DEBUG_VALUE: bar:y <- RDI
cmpb $0, %r8b
movq %rax, 32(%rsp) # 8-byte Spill
movq %rsi, 24(%rsp) # 8-byte Spill
movq %rdi, 16(%rsp) # 8-byte Spill
.Ltmp3:
#DEBUG_VALUE: bar:y <- [RSP+16]
Fixed the comment to spell out the correct register and the check to
expect an address rather than a value.
Note that the range that is emitted for the RDI location was and is still
wrong, it claims to begin at the function prologue, but really it should
start where RDI is first assigned.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225851 91177308-0d34-0410-b5e6-96231b3b80d8
The backend now assumes that all immediates are integers. This allows
us to simplify immediate handling code, becasue we no longer need to
handle fp and integer immediates differently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225844 91177308-0d34-0410-b5e6-96231b3b80d8
Even before I sunk the debug flag into the opt tool this had been made
obsolete by factoring the pass and analysis managers into a single set
of templates that all used the core flag. No functionality changed here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225842 91177308-0d34-0410-b5e6-96231b3b80d8
and expose the necessary hooks in the API directly.
This makes it much cleaner for example to log the usage of a pass
manager from a library. It also makes it more obvious that this
functionality isn't "optional" or "asserts-only" for the pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225841 91177308-0d34-0410-b5e6-96231b3b80d8
This now handles both 32 and 64-bit element sizes.
In this version, the test are in vector-shuffle-512-v8.ll, canonicalized by
Chandler's update_llc_test_checks.py.
Part of <rdar://problem/17688758>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225838 91177308-0d34-0410-b5e6-96231b3b80d8
referring to and give them nice comments.
Previously, these were used, but now things use the generic form of the
AnalysisManager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225833 91177308-0d34-0410-b5e6-96231b3b80d8
This adds assembly and bitcode support for `MDLocation`. The assembly
side is rather big, since this is the first `MDNode` subclass (that
isn't `MDTuple`). Part of PR21433.
(If you're wondering where the mountains of testcase updates are, we
don't need them until I update `DILocation` and `DebugLoc` to actually
use this class.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225830 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a new hook to prevent expanding sqrt in terms
of rsqrt and reciprocal. v_rcp_f32, v_rsq_f32, and v_sqrt_f32 are
all the same rate, so this expansion would just double the number
of instructions and cycles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225828 91177308-0d34-0410-b5e6-96231b3b80d8
Only do for f32 since I'm unclear on both what this is expecting
for the refinement steps in terms of accuracy, and what
f64 instruction actually provides.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225827 91177308-0d34-0410-b5e6-96231b3b80d8
Add a new subclass of `UniquableMDNode`, `MDLocation`. This will be the
IR version of `DebugLoc` and `DILocation`. The goal is to rename this
to `DILocation` once the IR classes supersede the `DI`-prefixed
wrappers.
This isn't used anywhere yet. Part of PR21433.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225824 91177308-0d34-0410-b5e6-96231b3b80d8
Speculating things is generally good. SI+ has instructions for these
for 32-bit values. This is still probably better even with the expansion
for 64-bit values, although it is odd that this callback doesn't have
the size as a parameter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225822 91177308-0d34-0410-b5e6-96231b3b80d8
The issue was introduced in r214638:
+ for (auto &BSIter : BlocksSchedules) {
+ scheduleBlock(BSIter.second.get());
+ }
Because BlocksSchedules is a DenseMap with BasicBlock* keys, blocks are
scheduled in non-deterministic order, resulting in unpredictable IR.
Patch by Daniel Reynaud!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225821 91177308-0d34-0410-b5e6-96231b3b80d8
This was already done in clang, this commit now uses the integrated
assembler as default when using LLVM tools directly.
A number of test cases deliberately using an invalid instruction in
inline asm now have to use -no-integrated-as.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225820 91177308-0d34-0410-b5e6-96231b3b80d8
This was already done in clang, this commit now uses the integrated
assembler as default when using LLVM tools directly.
A number of test cases using inline asm had to be adapted, either by
updating the expected output, or by using -no-integrated-as (for such
tests that deliberately use an invalid instruction in inline asm).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225819 91177308-0d34-0410-b5e6-96231b3b80d8
No functional changes, I'm just going to be doing a lot of work in these files and it would be helpful if they had more current LLVM style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225817 91177308-0d34-0410-b5e6-96231b3b80d8
Reverting this while I investiage buildbot failures (segfaulting in
GetCostForDef at ScheduleDAGRRList.cpp:314).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225811 91177308-0d34-0410-b5e6-96231b3b80d8
The ppc64le platform will emit a .localentry directive. This is triggering
a false-positive against a CHECK-NOT: .loc in multiline.ll.
Add a space "{{ }}" to the check-not line to allow for arguments, and
prevent .localentry from matching.
Differential Revision: http://reviews.llvm.org/D6935
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225810 91177308-0d34-0410-b5e6-96231b3b80d8
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225808 91177308-0d34-0410-b5e6-96231b3b80d8
When computing the call-site offset, use AP.CurrentFnSymForSize instead of
AP.CurrentFnSym. There should be no change for other targets, but this is
necessary for generating valid expressions for PPC64/ELF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225807 91177308-0d34-0410-b5e6-96231b3b80d8
While, generally speaking, the process of lowering arguments for a patchpoint
is the same as lowering a regular indirect call, on some targets it may not be
exactly the same. Targets may not, for example, want to add additional register
dependencies that apply only to making cross-DSO calls through linker stubs,
may not want to load additional registers out of function descriptors, and may
not want to add additional side-effect-causing instructions that cannot be
removed later with the call itself being generated.
The PowerPC target will use this in a future commit (for all of the reasons
stated above).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225806 91177308-0d34-0410-b5e6-96231b3b80d8
Some targets, PowerPC for example, have pseudo-registers (such as that used to
represent the rounding mode), that don't have DWARF register numbers or a
register class. These are used only for internal dependency tracking, and
should not appear in the recorded live-outs. This adds a callback allowing the
target to pre-process the live-out mask in order to remove these kinds of
registers so that the StackMaps code does not complain about them and/or
attempt to include them in the output.
This will be used by the PowerPC target in a future commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225805 91177308-0d34-0410-b5e6-96231b3b80d8
We really need a separate 64-bit version of this instruction so that it can be
marked as clobbering LR8 (instead of just LR). No change in functionality
(although the verifier might be slightly happier), however, it is required for
stackmap/patchpoint support. Thus, this will be covered by stackmap test cases
once those are added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225804 91177308-0d34-0410-b5e6-96231b3b80d8
For registers that have DWARF numbers (like CA, which is really part of XER),
add them. Also, RM is not an SPR, and the declaration hack (where it is
declared as an SPR with an arbitrary number) is not needed, so just declare it
as a register.
NFC; although CA's register number will be needed when stackmap/patchpoint
support is added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225800 91177308-0d34-0410-b5e6-96231b3b80d8
The alias cache has a problem of incorrect collisions in case a new instruction is allocated at the same address as a previously deleted instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225790 91177308-0d34-0410-b5e6-96231b3b80d8
In order to use this feature, configure LLVM as usual,
but then build and install it as:
make all install SYSTEM_LLVM_CONFIG=llvm-config
where llvm-config is the llvm-config binary installed on your
system (possibly llvm-config-VERSION on e.g. Debian).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225787 91177308-0d34-0410-b5e6-96231b3b80d8
This speeds up the dependency calculations for blocks with many load/store/call instructions.
Beside the improved runtime, there is no functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225786 91177308-0d34-0410-b5e6-96231b3b80d8
a nested class template for the PassModel, and use the T-suffix for the
two typedefs to match the code in the AnalysisManager.
This is the last of the fairly fundamental code cleanups here. Will be
focusing on the printing of analyses next to finish that aspect off.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225785 91177308-0d34-0410-b5e6-96231b3b80d8