--- Reverse-merging r85338 into '.':
U lib/CodeGen/SimpleRegisterCoalescing.cpp
U lib/CodeGen/SimpleRegisterCoalescing.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85454 91177308-0d34-0410-b5e6-96231b3b80d8
use it to control tail merging when there is a tradeoff between performance
and code size. When there is only 1 instruction in the common tail, we have
been merging. That can be good for code size but is a definite loss for
performance. Now we will avoid tail merging in that case when the
optimization level is "Aggressive", i.e., "-O3". Radar 7338114.
Since the IfConversion pass invokes BranchFolding, it too needs to know
the optimization level. Note that I removed the RegisterPass instantiation
for IfConversion because it required a default constructor. If someone
wants to keep that for some reason, we can add a default constructor with
a hard-wired optimization level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85346 91177308-0d34-0410-b5e6-96231b3b80d8
stack slots and giving them different PseudoSourceValue's did not fix the
problem of post-alloc scheduling miscompiling llvm itself.
- Apply Dan's conservative workaround by assuming any non fixed stack slots can
alias other memory locations. This means a load from spill slot #1 cannot
move above a store of spill slot #2.
- Enable post-alloc scheduling for x86 at optimization leverl Default and above.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84424 91177308-0d34-0410-b5e6-96231b3b80d8
truncating an SDValue (depending on whether the target
type is bigger or smaller than the value's type); or zero
extending or truncating it. Use it in a few places (this
seems to be a popular operation, but I only modified cases
of it in SelectionDAGBuild). In particular, the eh_selector
lowering was doing this wrong due to a repeated rather than
inverted test, fixed with this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84027 91177308-0d34-0410-b5e6-96231b3b80d8
is trivially rematerializable and integrate it into
TargetInstrInfo::isTriviallyReMaterializable. This way, all places that
need to know whether an instruction is rematerializable will get the
same answer.
This enables the useful parts of the aggressive-remat option by
default -- using AliasAnalysis to determine whether a memory location
is invariant, and removes the questionable parts -- rematting operations
with virtual register inputs that may not be live everywhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83687 91177308-0d34-0410-b5e6-96231b3b80d8
While recording beginning of a function, use scope info from the first location entry instead of just relying on first location entry itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83684 91177308-0d34-0410-b5e6-96231b3b80d8
implementations with a new MachineInstr::isInvariantLoad, which uses
MachineMemOperands and is target-independent. This brings MachineLICM
and other functionality to targets which previously lacked an
isInvariantLoad implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83475 91177308-0d34-0410-b5e6-96231b3b80d8
a virtual register to eliminate a frame index, it can return that register
and the constant stored there to PEI to track. When scavenging to allocate
for those registers, PEI then tracks the last-used register and value, and
if it is still available and matches the value for the next index, reuses
the existing value rather and removes the re-materialization instructions.
Fancier tracking and adjustment of scavenger allocations to keep more
values live for longer is possible, but not yet implemented and would likely
be better done via a different, less special-purpose, approach to the
problem.
eliminateFrameIndex() is modified so the target implementations can return
the registers they wish to be tracked for reuse.
ARM Thumb1 implements and utilizes the new mechanism. All other targets are
simply modified to adjust for the changed eliminateFrameIndex() prototype.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83467 91177308-0d34-0410-b5e6-96231b3b80d8
to emit target-specific things at the beginning of the asm output. This
fixes a problem for PPC, where the text sections are not being kept together
as expected. The base class doInitialization code calls DW->BeginModule()
which emits a bunch of DWARF section directives. The PPC doInitialization
code then emits all the TEXT section directives, with the intention that they
will be kept together. But as I understand it, the Darwin assembler treats
the default TEXT section as a special case and moves it to the beginning of
the file, which means that all those DWARF sections are in the middle of
the text. With this change, the EmitStartOfAsmFile hook is called before
the DWARF section directives are emitted, so that all the PPC text section
directives come out right at the beginning of the file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83176 91177308-0d34-0410-b5e6-96231b3b80d8
basic blocks that are so long that their size overflows a short.
Also assert that overflow does not happen in the future, as requested by Evan.
This fixes PR4401.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83159 91177308-0d34-0410-b5e6-96231b3b80d8