Currently AArch64FastISel crashes if it tries to extend an integer into an
MVT::i128. This can happen by creating 128 bit integers like so:
typedef unsigned int uint128_t __attribute__((mode(TI)));
typedef int sint128_t __attribute__((mode(TI)));
This patch makes EmitIntExt check for their presence and then falls back to
SelectionDAG.
Tests included.
rdar://17516686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212492 91177308-0d34-0410-b5e6-96231b3b80d8
We've been performing the wrong operation on ARM for "atomicrmw nand" for
years, since "a NAND b" is "~(a & b)" rather than ARM's very tempting "a & ~b".
This bled over into the generic expansion pass.
So I assume no-one has ever actually tried to do an atomic nand in the real
world. Oh well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212443 91177308-0d34-0410-b5e6-96231b3b80d8
vector type legalization strategies in a more fine grained manner, and
change the legalization of several v1iN types and v1f32 to be widening
rather than scalarization on AArch64.
This fixes an assertion failure caused by scalarizing nodes like "v1i32
trunc v1i64". As v1i64 is legal it will fail to scalarize v1i32.
This also provides a foundation for other targets to have more granular
control over how vector types are legalized.
Patch by Hao Liu, reviewed by Tim Northover. I'm committing it to allow
some work to start taking place on top of this patch as it adds some
really important hooks to the backend that I'd like to immediately start
using. =]
http://reviews.llvm.org/D4322
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212242 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commits r212189 and r212190.
While this pass was accidentally disabled (until r212073), r205437
slipped in a use of `auto` that should have been `auto&`.
This fixes PR20188.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212201 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212109, which reverted r212088.
However, disable the assert as it's not necessary for correctness. There are
several corner cases that the assert needed to handle better for in-order
scheduling, but none of them are incorrect scheduler behavior. The assert is
mainly there to collect good unit tests like this and ensure that the
target-independent scheduler is working as expected with the various machine
models.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212187 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212088, which is causing a number of spec
failures. Will provide reduced test cases shortly.
PR20057
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212109 91177308-0d34-0410-b5e6-96231b3b80d8
AArch64AddressTypePromotion was doing nothing because it was using the
old semantics of `Use` and `uses()`, when it really wanted to get at the
`users()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212073 91177308-0d34-0410-b5e6-96231b3b80d8
The combine for mul x, pow2 +/- 1 is unchanged. Test cases for
both combines as well as mul x, pow2 have been added as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212044 91177308-0d34-0410-b5e6-96231b3b80d8
Fixe for Bug 20057 - Assertion failied in llvm::SUnit* llvm::SchedBoundary::pickOnlyChoice(): Assertion `i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && "permanent hazard"'
Thanks to Chad for the test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211865 91177308-0d34-0410-b5e6-96231b3b80d8
"Fix PR20056: Implement pseudo LDR <reg>, =<literal/label> for AArch64"
Missed files are added in this commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211605 91177308-0d34-0410-b5e6-96231b3b80d8
ReconstructShuffle() may wrongly creat a CONCAT_VECTOR trying to
concat 2 of v2i32 into v4i16. This commit is to fix this issue and
try to generate UZP1 instead of lots of MOV and INS.
Patch is initalized by Kevin Qin, and refactored by Tim Northover.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211144 91177308-0d34-0410-b5e6-96231b3b80d8
To make sure branches are in range, we need to do a better job of estimating
the length of an inline assembly block than "it's probably 1 instruction, who'd
write asm with more than that?".
Fortunately there's already a (highly suspect, see how many ways you can think
of to break it!) callback for this purpose, which is used by the other targets.
rdar://problem/17277590
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211095 91177308-0d34-0410-b5e6-96231b3b80d8
There's probably no acatual change in behaviour here, just updating
the LowerFP_TO_INT function to be more similar to the reverse
implementation and updating costs to current CodeGen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210985 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is to move GlobalMerge pass from Transform/Scalar
to CodeGen, because GlobalMerge depends on TargetMachine.
In the mean time, the macro INITIALIZE_TM_PASS is also moved
to CodeGen/Passes.h. With this fix we can avoid making
libScalarOpts depend on libCodeGen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210951 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210903 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is to improve global merge pass and support global symbol merge.
The global symbol merge is not enabled by default. For aarch64, we need some
more back-end fix to make it really benifit ADRP CSE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210640 91177308-0d34-0410-b5e6-96231b3b80d8
As Ana Pazos pointed out, these have to be restored to their incoming values
before a function returns; i.e. before the tail call. So they can't be used
correctly as the destination register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210525 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we were abandonning the attempt, leading to some combination of
extra work (when selection of a load/store fails completely) and inferior code
(when this leads to a real memcpy call instead of inlining).
rdar://problem/17187463
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210520 91177308-0d34-0410-b5e6-96231b3b80d8
We were hitting an assert if FastISel couldn't create the load or store we
requested. Currently this happens for large frame-local addresses, though
CodeGen could be improved there.
rdar://problem/17187463
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210519 91177308-0d34-0410-b5e6-96231b3b80d8
The tests check that the following transform happens:
(ldr|str) X, [x20]
...
sub x20, x20, #16
->
(ldr|str) X, [x20], #-16
with X being either w0, x0, s0, d0 or q0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210113 91177308-0d34-0410-b5e6-96231b3b80d8
This means the output of LowerFormalArguments returns a lowered
SDValue with the correct type (expected in SelectionDAGBuilder).
Without this, an assertion under a DEBUG macro triggers when those
types are passed on the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210102 91177308-0d34-0410-b5e6-96231b3b80d8
Add tests for the following transform:
add x8, x8, #16
...
str X, [x8]
->
str X, [x8, #16]!
with X being either w0, x0, s0, d0 or q0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210021 91177308-0d34-0410-b5e6-96231b3b80d8
Add tests for the following transform:
add x8, x8, #16
...
ldr X, [x8]
->
ldr X, [x8, #16]!
with X being either w0, x0, s0, d0 or q0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210018 91177308-0d34-0410-b5e6-96231b3b80d8
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.
When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.
This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.
I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.
rdar://problem/16227836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209883 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r208640 (I've just XFAILed the test) because it broke ppc64/Linux
self-hosting. Because nearly every regression test triggers a segfault, I hope
this will be easy to fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209747 91177308-0d34-0410-b5e6-96231b3b80d8
Add regression tests for the following transformation:
str X, [x20]
...
add x20, x20, #32
->
str X, [x20], #32
with X being either w0, x0, s0, d0 or q0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209715 91177308-0d34-0410-b5e6-96231b3b80d8
Add regression tests for the following transformation:
ldr X, [x20]
...
add x20, x20, #32
->
ldr X, [x20], #32
with X being either w0, x0, s0, d0 or q0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209711 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is debatable. There are two possible approaches, neither
of which is really satisfactory:
1. Use "@foo(i1 zeroext)" to mean an extension to 32-bits on Darwin,
and 8 bits otherwise.
2. Redefine "@foo(i1)" to mean that the i1 is extended by the caller
to 8 bits. This goes against the spirit of "zeroext" I think, but
it's a bit of a vague construct anyway (by definition you're going
to extend to the amount required by the ABI, that's why it's the
ABI!).
This implements option 2. The DAG machinery really isn't setup for the
first (there's a fairly strong assumption that "zeroext" goes to at
least the smallest register size), and even if it was the resulting
DAG looks like it would be inferior in many cases.
Theoretically we could add AssertZext nodes in the consumers of
ABI-passed values too now, but this actually seems to make the code
worse in practice by making truncation proceed in two steps. The code
produced is equally valid if we continue to assume only the low bit is
defined.
Should fix PR19850
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209637 91177308-0d34-0410-b5e6-96231b3b80d8
We can eliminate the custom C++ code in favour of some TableGen to
check the same things. Functionality should be identical, except for a
buffer overrun that was present in the C++ code and meant webkit
failed if any small argument needed to be passed on the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209636 91177308-0d34-0410-b5e6-96231b3b80d8
We have a couple of regression tests for load/store pairing, but (to my knowledge) there are no regression tests for the load/store + add/sub folding.
As a first step towards increased test coverage of this area, this commit adds a test for one instance of a load + add to pre-indexed load transformation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209618 91177308-0d34-0410-b5e6-96231b3b80d8
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209576 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r208934.
The patch depends on aliases to GEPs with non zero offsets. That is not
supported and fairly broken.
The good news is that GlobalAlias is being redesigned and will have support
for offsets, so this patch should be a nice match for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208978 91177308-0d34-0410-b5e6-96231b3b80d8
TableGen has a fairly dubious heuristic to decide whether an alias should be
printed: does the alias have lest operands than the real instruction. This is
bad enough (particularly with no way to override it), but it should at least be
calculated consistently for both strings.
This patch implements that logic: first get the *correct* string for the
variant, in the same way as the Matcher, without guessing; then count the
number of whitespace chars.
There are basically 4 changes this brings about after the previous
commits; all of these appear to be good, so I have changed the tests:
+ ARM64: we print "neg X, Y" instead of "sub X, xzr, Y".
+ ARM64: we skip implicit "uxtx" and "uxtw" modifiers.
+ Sparc: we print "mov A, B" instead of "or %g0, A, B".
+ Sparc: we print "fcmpX A, B" instead of "fcmpX %fcc0, A, B"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208969 91177308-0d34-0410-b5e6-96231b3b80d8
This commit implements two command line switches -global-merge-on-external
and -global-merge-aligned, and both of them are false by default, so this
optimization is disabled by default for all targets.
For ARM64, some back-end behaviors need to be tuned to get this optimization
further enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208934 91177308-0d34-0410-b5e6-96231b3b80d8
In all cases, if a "mov" alias exists, it is the canonical form of the
instruction. Now that TableGen can support aliases containing syntax variants,
we can enable them and improve the quality of the asm output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208874 91177308-0d34-0410-b5e6-96231b3b80d8
To get at least one use of the change (and some actual tests) in with its
commit, I've enabled the AArch64 & ARM64 NEON mov aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208867 91177308-0d34-0410-b5e6-96231b3b80d8
When performing a scalar comparison that feeds into a vector select,
it's actually better to do the comparison on the vector side: the
scalar route would be "CMP -> CSEL -> DUP", the vector is "CM -> DUP"
since the vector comparisons are all mask based.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208210 91177308-0d34-0410-b5e6-96231b3b80d8
This completes the port of r204814 (cpirker "AArch64_BE function argument
passing for ARM ABI") from AArch64 to ARM64, and fixes a bunch of issues
found during later development along the way. The biggest of these was
that the alignment fixup logic wasn't replicated into all the places it
should have been.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208192 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208104 91177308-0d34-0410-b5e6-96231b3b80d8
An alias has the address of what it points to, so it also has the same
alignment.
This allows a few optimizations to see past aliases for free.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208103 91177308-0d34-0410-b5e6-96231b3b80d8
The canonical form of the BFM instruction is always one of the more explicit
extract or insert operations, which makes reading output much easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207752 91177308-0d34-0410-b5e6-96231b3b80d8
On instructions using the NZCV register, a couple of conditions have dual
representations: HS/CS and LO/CC (meaning unsigned-higher-or-same/carry-set and
unsigned-lower/carry-clear). The first of these is more descriptive in most
circumstances, so we should print it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207644 91177308-0d34-0410-b5e6-96231b3b80d8
Since these are mostly used in "lsl #16", "lsl #32", "lsl #48" combinations to
piece together an immediate in 16-bit chunks, hex is probably the most
appropriate format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207635 91177308-0d34-0410-b5e6-96231b3b80d8
Since these instructions only accept a 12-bit immediate, possibly shifted left
by 12, the canonical syntax used by the architecture reference manual is "#N {,
lsl #12 }". We should accept an immediate that has already been shifted, (e.g.
Also, print a comment giving the full addend since it can be helpful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207633 91177308-0d34-0410-b5e6-96231b3b80d8
This is a partial port of r204816 (cpirker "Elf support for MC-JIT
runtime dynamic linker") from AArch64 to ARM64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207625 91177308-0d34-0410-b5e6-96231b3b80d8
There are no patterns for this. This was already fixed for ARM64 but I forgot
to apply it to AArch64 too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207515 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is a supplement of implementing predicate of FP, enabling aarch64 backend
no-fp tests on arm64 target for verification. During this, one bug is exposed and
fixed by this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207215 91177308-0d34-0410-b5e6-96231b3b80d8
This matches ARM64 behaviour, which I think is clearer. It also puts all the
churn from that difference into one easily ignored commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207116 91177308-0d34-0410-b5e6-96231b3b80d8
ARM64 was not producing pure BFI instructions for bitfield insertion
operations, unlike AArch64. The approach had to be a little different (in
ISelDAGToDAG rather than ISelLowering), and the outcomes aren't identical but
hopefully this gives it similar power.
This should address PR19424.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207102 91177308-0d34-0410-b5e6-96231b3b80d8
Covers quite a few extra instructions (like any of the max/min ones
which were broken until recently on ARM64).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206575 91177308-0d34-0410-b5e6-96231b3b80d8
Code mostly copied from AArch64, just tidied up a trifle and plumbed
into the ARM64 way of doing things.
This also enables the AArch64 tests which inspired the previous
untested commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206574 91177308-0d34-0410-b5e6-96231b3b80d8
ARM64 was scalarizing some vector comparisons which don't quite map to
AArch64's compare and mask instructions. AArch64's approach of sacrificing a
little efficiency to emulate them with the limited set available was better, so
I ported it across.
More "inspired by" than copy/paste since the backend's internal expectations
were a bit different, but the tests were invaluable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206570 91177308-0d34-0410-b5e6-96231b3b80d8
I enhanced it a little in the process. The decision shouldn't really be beased
on whether a BUILD_VECTOR is a splat: any set of constants will do the job
provided they're related in the correct way.
Also, the BUILD_VECTOR could be any operand of the incoming AND nodes, so it's
best to check for all 4 possibilities rather than assuming it'll be the RHS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206569 91177308-0d34-0410-b5e6-96231b3b80d8
It's not actually used to handle C or C++ ABI rules on ARM64, but could well be
emitted by other language front-ends, so it's as well to have a sensible
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206568 91177308-0d34-0410-b5e6-96231b3b80d8