A problem with our old behavior becomes observable under x86-64 COFF
when we need a read-only GV which has an initializer which is referenced
using a relocation: we would mark the section as writable. Marking the
section as writable interferes with section merging.
This fixes PR21009.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218179 91177308-0d34-0410-b5e6-96231b3b80d8
tricky case of single-element insertion into the zero lane of a zero
vector.
We can't just use the same pattern here as we do in every other vector
type because the general insertion logic can handle insertion into the
non-zero lane of the vector. However, in SSE4.1 with v4f32 vectors we
have INSERTPS that is a much better choice than the generic one for such
lowerings. But INSERTPS can do lots of other lowerings as well so
factoring its logic into the general insertion logic doesn't work very
well. We also can't just extract the core common part of the general
insertion logic that is faster (forming VZEXT_MOVL synthetic nodes that
lower to MOVSS when they can) because VZEXT_MOVL is often *faster* than
a blend while INSERTPS is slower! So instead we do a restrictive
condition on attempting to use the generic insertion logic to narrow it
to those cases where VZEXT_MOVL won't need a shuffle afterward and thus
will do better than INSERTPS. Then we try blending. Then we go back to
INSERTPS.
This still doesn't generate perfect code for some silly reasons that can
be fixed by tweaking the td files for lowering VZEXT_MOVL to use
XORPS+BLENDPS when available rather than XORPS+MOVSS when the input ends
up in a register rather than a load from memory -- BLENDPSrr has twice
the reciprocal throughput of MOVSSrr. Don't you love this ISA?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218177 91177308-0d34-0410-b5e6-96231b3b80d8
analysis used elsewhere. This removes the last duplicate of this logic.
Also simplify the code here quite a bit. No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218176 91177308-0d34-0410-b5e6-96231b3b80d8
floating point types and use it for both v2f64 and v2i64 single-element
insertion lowering.
This fixes the last non-AVX performance regression test case I've gotten
of for the new vector shuffle lowering. There is obvious analogous
lowering for v4f32 that I'll add in a follow-up patch (because with
INSERTPS, v4f32 requires special treatment). After that, its AVX stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218175 91177308-0d34-0410-b5e6-96231b3b80d8
vector lanes can be modeled as zero with a call to the new function that
computes a bit-vector representing that information.
No functionality changed here, but will allow doing more clever things
with the zero-test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218174 91177308-0d34-0410-b5e6-96231b3b80d8
I just tried reproducing some of the optimization failures in README.txt in the
X86 backend, and many of them could not be reproduced. In general the entire
file appears quite bit-rotted, whatever interesting parts remain should be
moved to bugzilla, and the rest deleted. I did not spend the time to do that,
so I just deleted the few I tried reproducing which are obsolete, to save some
time to whoever will find the courage to do it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218170 91177308-0d34-0410-b5e6-96231b3b80d8
When looking through sign/zero-extensions the code would always assume there is
such an extension instruction and use the wrong operand for the address.
There was also a minor issue in the handling of 'AND' instructions. I
accidentially used a 'cast' instead of a 'dyn_cast'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218161 91177308-0d34-0410-b5e6-96231b3b80d8
it from the shuffle pattern matching logic.
Also cleaned up variable names, comments, etc. No functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218152 91177308-0d34-0410-b5e6-96231b3b80d8
In r217636, the value stored in KernelInfo.Num[VS]GPRSs was changed from
the highest GPR index used to the number of gprs in order to be
consistent with the name of the variable.
The code writing the config values still assumed that the value in this
variable was the highest GPR index used, which caused the compiler to
over report the number of GPRs being used.
https://bugs.freedesktop.org/show_bug.cgi?id=84089
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218150 91177308-0d34-0410-b5e6-96231b3b80d8
lowering to support both anyext and zext and to custom lower for many
different microarchitectures.
Using this allows us to get *exactly* the right code for zext and anyext
shuffles in all the vector sizes. For v16i8, the improvement is *huge*.
The new SSE2 test case added I refused to add before this because it was
sooooo muny instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218143 91177308-0d34-0410-b5e6-96231b3b80d8
Having create* functions return the object they create is more
readable than using an in-out parameter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218139 91177308-0d34-0410-b5e6-96231b3b80d8
Since llvm-cov shows the source file in its output, be careful about
potentially matching the check lines themselves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218138 91177308-0d34-0410-b5e6-96231b3b80d8
To reduce the size of -gmlt data, skip the subprograms without any
inlined subroutines. Since we've now got the ability to make these
determinations in the backend (funnily enough - we added the flag so we
wouldn't produce ranges under -gmlt, but with this change we use the
flag, but go back to producing ranges under -gmlt).
Instead, just produce CU ranges to inform the consumer which parts of
the code are described by this CU's line table. Tools could inspect the
line table directly to compute the range, but the CU ranges only seem to
be about 0.5% of object/executable size, so I'm not too worried about
teaching llvm-symbolizer that trick just yet - it's certainly a possible
piece of future work.
Update an llvm-symbolizer test just to demonstrate that this schema is
acceptable there (if it wasn't, the compiler-rt tests would catch this,
but good to have an in-llvm-tree test for llvm-symbolizer's behavior
here)
Building the clang binary with -gmlt with this patch reduces the total
size of object files by 5.1% (5.56% without ranges) without compression
and the executable by 4.37% (4.75% without ranges).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218129 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This will allow to request the creation of a forward delacred variable
at is point of use (for imported declarations, this will be
DwarfDebug::constructImportedEntityDIE) rather than having to put the
forward decl in a retention list.
Note that getOrCreateGlobalVariable returns the actual definition DIE when the
routine creates a declaration and a definition DIE. If you agree this is the
right behavior, then I'll have a followup patch that registers the definition
in the DIE map instead of the declaration as it is today (this 'breaks' only
one test, where we test that the imported entity is the declaration). I'm
not sure what's best here, but it's easy enough for a consumer to follow the
DW_AT_specification link to get to the declaration, whereas it takes more
work to find the actual definition from a declaration DIE.
Reviewers: echristo, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5381
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218126 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
getFileNameForUnit() is basically a wrapper around LineTable::getFileNameByIndex().
Fold its additional functionality (adding the DWARFUnit compilation dir) into
LineTable::getFileNameByIndex().
getFileLineInfoForCompileUnit() is a wrapper around getFileNameForUnit(). As
a function to search the line information by address, it seems natural to put
it in the LineTable also.
Before this commit only the Context with its private helpers could do Linetable
lookups. This newly exposed feature will be used by the DIE dumping code to
get access to file information referenced in DIE attributes.
This commit has already been partly reviewed in D5192 and contained an
additional and a bit controversial 'realpath' call that is left out of this
patch. We can reinstate that realpath code later if it is desirable.
Test Plan:
The patch contains no tests as it should be functionally equivalent to the
previous code. As requested in the last review, I checked if the relative
path handling copied from the Context to LineTable::getFileNameByIndex()
was covered, and indeed the symbolizer tests fail if it is removed.
Reviewers: dblaikie, echristo, aprantl, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5354
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218125 91177308-0d34-0410-b5e6-96231b3b80d8
The heuristic used by DAGCombine to form FMAs checks that the FMUL has only one
use, but this is overly-conservative on some systems. Specifically, if the FMA
and the FADD have the same latency (and the FMA does not compete for resources
with the FMUL any more than the FADD does), there is no need for the
restriction, and furthermore, forming the FMA leaving the FMUL can still allow
for higher overall throughput and decreased critical-path length.
Here we add a new TLI callback, enableAggressiveFMAFusion, false by default, to
elide the hasOneUse check. This is enabled for PowerPC by default, as most
PowerPC systems will benefit.
Patch by Olivier Sallenave, thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218120 91177308-0d34-0410-b5e6-96231b3b80d8
to undef lanes as well as defined widenable lanes. This dramatically
improves the lowering we use for undef-shuffles in a zext-ish pattern
for SSE2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218115 91177308-0d34-0410-b5e6-96231b3b80d8
Not sure why I only did SSSE3 here. Also, I've left out some of the SSE2
ones because the shuffles are so absurd it's not worth transcribing
them. Will try to fix them to be sane and then check them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218114 91177308-0d34-0410-b5e6-96231b3b80d8
shuffles that are zext-ing.
Not a lot to see here; the undef lane variant is better handled with
pshufd, but this improves the actual zext pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218112 91177308-0d34-0410-b5e6-96231b3b80d8
Uncovered lines in the middle of a covered region weren't being shown
when filtering to a particular function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218109 91177308-0d34-0410-b5e6-96231b3b80d8
The filename-equivalence flag allows you to show coverage when your
source files don't have the same full paths as those that generated
the data. This is mostly useful for writing tests in a cross-platform
way.
This wasn't triggering in cases where the filename was derived
directly from the coverage data, which meant certain types of test
case were impossible to write. This patch fixes that, and following
patches involve tests that need this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218108 91177308-0d34-0410-b5e6-96231b3b80d8
to the new vector shuffle lowering code.
This allows us to emit PMOVZX variants consistently for patterns where
it is a viable lowering. This instruction is both fast and allows us to
fold loads into it. This only hooks the new lowering up for i16 and i8
element widths, mostly so I could manage the change to the tests. I'll
add the i32 one next, although it is significantly less interesting.
One thing to note is that we already had some tests for these patterns
but those tests had far less horrible instructions. The problem is that
those tests weren't checking the strict start and end of the instruction
sequence. =[ As a consequence something changed in the lowering making
us generate *TERRIBLE* code for these patterns in SSE2 through SSSE3.
I've consolidated all of the tests and spelled out the madness that we
currently emit for these shuffles. I'm going to try to figure out what
has gone wrong here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218102 91177308-0d34-0410-b5e6-96231b3b80d8
With this optimization, we will not always insert zext for values crossing
basic blocks, but insert sext if the users of a value crossing basic block
has preference of sign predicate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218101 91177308-0d34-0410-b5e6-96231b3b80d8
This omission will be done in a fancier manner once we're dealing with
"put gmlt in the skeleton CUs under fission" - it'll have to be
conditional on the kind of CU we're emitting into (skeleton or gmlt).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218098 91177308-0d34-0410-b5e6-96231b3b80d8