This lets lldb give sane output for SmallVectors, e.g.
Before:
(lldb) p sv
(llvm::SmallVector<int, 10>) $0 = {
(llvm::SmallVectorImpl<int>) llvm::SmallVectorImpl<int> = {
(llvm::SmallVectorTemplateBase<int>) llvm::SmallVectorTemplateBase<int> = {
(llvm::SmallVectorTemplateCommon<int>) llvm::SmallVectorTemplateCommon<int> = {
(llvm::SmallVectorBase) llvm::SmallVectorBase = {
(void *) BeginX = 0x00007fff5fbff960
...
}
After:
(lldb) p sv
(llvm::SmallVector<int, 10>) $0 = {
(int) [0] = 42
(int) [1] = 23
...
}
The script is still a bit rough so expect crashes for vectors of complex types.
Synthetic children are _not_ available in xcode 4.2, newer LLDBs should work though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148308 91177308-0d34-0410-b5e6-96231b3b80d8
implementation.
Currently lit still executes ExecutionEngine tests with JIT (not MCJIT) by
default. MCJIT tests can be executed manually by calling llvm-lit with
--param jit_impl=mcjit
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148299 91177308-0d34-0410-b5e6-96231b3b80d8
In CanXFormVExtractWithShuffleIntoLoad we assumed that EXTRACT_VECTOR_ELT can be later handled by the DAGCombiner.
However, in some cases on AVX, the EXTRACT_VECTOR_ELT is legalized to EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which
currently is not handled by the DAGCombiner. In this patch I added a check that we only extract from the XMM part.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148298 91177308-0d34-0410-b5e6-96231b3b80d8
It's becoming clear that LoopSimplify needs to unconditionally create loop preheaders. But that is a bigger fix. For now, continuing to hack LSR.
Fixes rdar://10701050 "Cannot split an edge from an IndirectBrInst" assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148288 91177308-0d34-0410-b5e6-96231b3b80d8
or clang bootstrap.
I will keep an eye on the bots.
Original message:
Only emit the Leh_func_endN symbol when needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148283 91177308-0d34-0410-b5e6-96231b3b80d8
BitVector uses the native word size for its internal representation.
That doesn't work well for literal bit masks in source code.
This patch adds BitVector operations to efficiently apply literal bit
masks specified as arrays of uint32_t. Since each array entry always
holds exactly 32 bits, these portable bit masks can be source code
literals, probably produced by TableGen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148272 91177308-0d34-0410-b5e6-96231b3b80d8
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148262 91177308-0d34-0410-b5e6-96231b3b80d8
Move to a by-section allocation and relocation scheme. This allows
better support for sections which do not contain externally visible
symbols.
Flesh out the relocation address vs. local storage address separation a
bit more as well. Remote process JITs use this to tell the relocation
resolution code where the code will live when it executes.
The startFunctionBody/endFunctionBody interfaces to the JIT and the
memory manager are deprecated. They'll stick around for as long as the
old JIT does, but the MCJIT doesn't use them anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148258 91177308-0d34-0410-b5e6-96231b3b80d8
Register masks will be used as a compact representation of large clobber
lists. Currently, an x86 call instruction has some 40 operands
representing call-clobbered registers. That's more than 1kB of useless
operands per call site.
A register mask operand references a bit mask of call-preserved
registers, everything else is clobbered. The bit mask will typically
come from TargetRegisterInfo::getCallPreservedMask().
By abandoning ImplicitDefs for call-clobbered registers, it also becomes
possible to share call instruction descriptions between calling
conventions, and we can get rid of the WINCALL* instructions.
This patch introduces the new operand kind. Future patches will add
RegMask support to target-independent passes before finally the fixed
clobber lists can be removed from call instruction descriptions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148250 91177308-0d34-0410-b5e6-96231b3b80d8
We know that the blend instructions only use the MSB, so if the mask is
sign-extended then we can convert it into a SHL instruction. This is a
common pattern because the type-legalizer sign-extends the i1 type which
is used by the LLVM-IR for the condition.
Added a new optimization in SimplifyDemandedBits for SIGN_EXTEND_INREG -> SHL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148225 91177308-0d34-0410-b5e6-96231b3b80d8