This requires some gymnastics to make it available for C code. Remove the names
from the disassembler tables, making them relocation free.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150303 91177308-0d34-0410-b5e6-96231b3b80d8
This CL delays reading of function bodies from initial parse until
materialization, allowing overlap of compilation with bitcode download.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149918 91177308-0d34-0410-b5e6-96231b3b80d8
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136023 91177308-0d34-0410-b5e6-96231b3b80d8
instruction set. This code adds support for the VEX prefix
and for the YMM registers accessible on AVX-enabled
architectures. Instruction table support that enables AVX
instructions for the disassembler is in an upcoming patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127644 91177308-0d34-0410-b5e6-96231b3b80d8
X86 instruction decode structure was being interpreted as
being in units of bits, although it is actually stored in
units of bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126147 91177308-0d34-0410-b5e6-96231b3b80d8
prefix would be misinterpreted in some cases on 32-bit
x86 platforms. Thanks to Olivier Meurant for identifying
the bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124709 91177308-0d34-0410-b5e6-96231b3b80d8
clang's -Wuninitialized-experimental warning.
While these don't look like real bugs, clang's
-Wuninitialized-experimental analysis is stricter
than GCC's, and these fixes have the benefit
of being general nice cleanups.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124073 91177308-0d34-0410-b5e6-96231b3b80d8
weren't properly reflecting the OperandSize attribute
of the instruction leading to improper decoding of
certain instructions with the 66H prefix. Also added
a test case for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117084 91177308-0d34-0410-b5e6-96231b3b80d8