planes. A SymbolTable could still have types in it! This fixes problems
with two regression tests that failed because a symbol table that only
contained types was being omitted from bytecode files. Thanks to Chris
for the reduced test case that helped find this immediately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13842 91177308-0d34-0410-b5e6-96231b3b80d8
This change removes the BuildBytecodeInfo flag from the SlotCalculator
class. This flag was needed to distinguish between the Bytecode/Writer
and the AsmWriter. Now that AsmWriter doesn't use SlotCalculator, we can
remove this flag and simplify some code. Also, some minor name changes
to CachedWriter.h needed to be committed (missed in previous commit).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13785 91177308-0d34-0410-b5e6-96231b3b80d8
the Abstract Data Type that holds slot number values and associates them
with Type* and Value*. The SlotTable is simply the holder of the slot
numbers and provides a controlled interface for building the table. It does
not enforce any particular idiom or functionality for manipulating the slot
numbers.
This is part of bug_122. The SlotCalculator and SlotMachine classes will
follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13764 91177308-0d34-0410-b5e6-96231b3b80d8
to index into structure types and allows arbitrary 32- and 64-bit integer
types to index into sequential types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12651 91177308-0d34-0410-b5e6-96231b3b80d8
fact "profitable" to do so. This makes compactification "free" for small
programs (ie, it is completely disabled) and even helps large programs by
not having to encode pointless compactification planes.
On 176.gcc, this saves 50K from the bytecode file, which is, alas only
a couple percent.
This concludes my head bashing against the bytecode format, at least for
now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10922 91177308-0d34-0410-b5e6-96231b3b80d8
This shrinks the bytecode file for 176.gcc by about 200K (10%), and 254.gap by
about 167K, a 25% reduction. There is still a lot of room for improvement in
the encoding of the compaction table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10915 91177308-0d34-0410-b5e6-96231b3b80d8
the bytecode file for 176.gcc by about 200K (10%), and 254.gap by about 167K,
a 25% reduction. There is still a lot of room for improvement in the encoding
of the compaction table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10913 91177308-0d34-0410-b5e6-96231b3b80d8
type planes. This saves about 5k on 176.gcc, and is needed for a subsequent
patch of mine I'm working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10908 91177308-0d34-0410-b5e6-96231b3b80d8
bytecode files when compiling 176.gcc, but more importantly will make it
easier to eliminate CPR's in the future (no new .bc revision will be
required to support them)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10884 91177308-0d34-0410-b5e6-96231b3b80d8
intended to save size (and does on small programs), but on big programs it
actually increases the size of the program slightly. The deal is that many
functions end up using the characters that the string contained, and the
characters are no longer in the global constant table, so they have to be
emitted in function specific constant pools.
This pessimization will be fixed in subsequent patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10864 91177308-0d34-0410-b5e6-96231b3b80d8
Since this really only makes sense for these two, change hte instance variable
to reflect whether we are writing a bytecode file or not. This makes it
reasonable to add bcwriter specific stuff to it as necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10837 91177308-0d34-0410-b5e6-96231b3b80d8
The first change (which is disabled) compactifies all of the function constant
pools into the global constant pool, in an attempt to reduce the amount of
duplication and overhead. Unfortunately, as the comment indicates, this is
not yet a win, so it is disabled.
The second change sorts the typeid's so that those types that can be used
by instructions in the program appear earlier in the table than those that
cannot (such as structures and arrays). This causes the instructions to
be able to use the dense encoding more often, saving about 5K on 254.gap.
This is only a .65% savings though, unfortunately. :(
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10754 91177308-0d34-0410-b5e6-96231b3b80d8
occurs when the symbol table for a module has been stripped, making all of the
function local symbols go away.
This saves 6728 bytes in the stripped bytecode file of 254.gap (which obviously
has 841 functions), which isn't a ton, but helps and was easy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10750 91177308-0d34-0410-b5e6-96231b3b80d8
each basic block in function. Instead, just emit a stream of instructions,
chopping up basic blocks based on when we find terminator instructions. This
saves a fairly substantial chunk of bytecode space. In stripped, sample
cases, for example, we get this reduction in size:
197.parser: 163036 -> 137180: 18.8% reduction
254.gap : 844936 -> 689392: 22.6%
255.vortex: 621724 -> 528444: 17.7%
...
Not bad for something this simple. :) Note that this doesn't require a new
bytecode version number at all, though version 1.1 should not need to support
the old format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10280 91177308-0d34-0410-b5e6-96231b3b80d8