is appropriate. This helps visually differentiate host-oriented
calculations from target-oriented calculations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68227 91177308-0d34-0410-b5e6-96231b3b80d8
large for the testsuite) took over six minutes to compile on my Mac.
The patched LLVM-GCC compiles that testcase in three seconds (GCC
takes less than one second). This hash function is more complex
(about 35 instructions on x86) than what Chris wanted, but I expect it
will be well-behaved with arbitrary inputs.
Thank you to everyone who responded to my previous request for advice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66962 91177308-0d34-0410-b5e6-96231b3b80d8
causing assertion failures in getSExtValue().
Fix it by making highWordBits actually contain what its name says,
and add some more unit-tests for APInt.
This fixes PR3419.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63107 91177308-0d34-0410-b5e6-96231b3b80d8
use raw_ostream instead of std::ostream. Among other goodness,
this speeds up llvm-dis of kc++ with a release build from 0.85s
to 0.49s (88% faster).
Other interesting changes:
1) This makes Value::print be non-virtual.
2) AP[S]Int and ConstantRange can no longer print to ostream directly,
use raw_ostream instead.
3) This fixes a bug in raw_os_ostream where it didn't flush itself
when destroyed.
4) This adds a new SDNode::print method, instead of only allowing "dump".
A lot of APIs have both std::ostream and raw_ostream versions, it would
be useful to go through and systematically anihilate the std::ostream
versions.
This passes dejagnu, but there may be minor fallout, plz let me know if
so and I'll fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55263 91177308-0d34-0410-b5e6-96231b3b80d8
and the slow-path cases out of line. This speeds up instcombine
a bit in real world cases. Patch contributed by m-s.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55063 91177308-0d34-0410-b5e6-96231b3b80d8
returning an std::string by value, it fills in a SmallString/SmallVector
passed in. This significantly reduces string thrashing in some cases.
More specifically, this:
- Adds an operator<< and a print method for APInt that allows you to
directly send them to an ostream.
- Reimplements APInt::toString to be much simpler and more efficient
algorithmically in addition to not thrashing strings quite as much.
This speeds up llvm-dis on kc++ by 7%, and may also slightly speed up the
asmprinter. This also fixes a bug I introduced into the asmwriter in a
previous patch w.r.t. alias printing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54873 91177308-0d34-0410-b5e6-96231b3b80d8
multiplicative inverse of a given number. Modify udivrem to allow input and
output pairs of arguments to overlap. Patch is based on the work by Chandler
Carruth.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52638 91177308-0d34-0410-b5e6-96231b3b80d8
over-shift-right should return -1. So here it should be signed-extended,
when bitwidth larger than 64.
test case: llvm/test/ExecutionEngine/2008-06-05-APInt-OverAShr.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51999 91177308-0d34-0410-b5e6-96231b3b80d8
profile of the APSInt object. This caused unexpected Profile collisions where
none should have occurred.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47338 91177308-0d34-0410-b5e6-96231b3b80d8
arbitrary range of bits embedded in the middle of another bignum.
This kind of operation is desirable in many cases of software
floating point, e.g. converting bignum integers to floating point
numbers of fixed precision (you want to extract the precision most
significant bits).
Elsewhere, add an assertion, and exit the shift functions early if
the shift count is zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42745 91177308-0d34-0410-b5e6-96231b3b80d8
part widths. Also, return the number of parts actually required to
hold the result's value.
Remove an over-cautious condition from rounding of float->hex conversion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42669 91177308-0d34-0410-b5e6-96231b3b80d8
bit width instead of number of words allocated, which
makes it actually work for int->APF conversions.
Adjust callers. Add const to one of the APInt constructors
to prevent surprising match when called with const
argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42210 91177308-0d34-0410-b5e6-96231b3b80d8
double from some of the many places in the optimizers
it appears, and do something reasonable with x86
long double.
Make APInt::dump() public, remove newline, use it to
dump ConstantSDNode's.
Allow APFloats in FoldingSet.
Expand X86 backend handling of long doubles (conversions
to/from int, mostly).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41967 91177308-0d34-0410-b5e6-96231b3b80d8
two's complement bignum arithmetic. They could be used to
implement much of APInt, but the idea is they are enough to
implement APFloat as well, which the current APInt interface
is not suited for.
Patch by Neil Booth!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41124 91177308-0d34-0410-b5e6-96231b3b80d8
can't use getZExtValue() to extract the low order bits for each digit.
Instead, we need to access the low order word directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37242 91177308-0d34-0410-b5e6-96231b3b80d8