This patch extends FoldBranchToCommonDest to fold unconditional branches.
For unconditional branches, we fold them if it is easy to update the phi nodes
in the common successors.
rdar://10554090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158392 91177308-0d34-0410-b5e6-96231b3b80d8
For store->load dependencies that may alias, we should always use
TrueMemOrderLatency, which may eventually become a subtarget hook. In
effect, we should guarantee at least TrueMemOrderLatency on at least
one DAG path from a store to a may-alias load.
This should fix the standard mode as well as -enable-aa-sched-mi".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158380 91177308-0d34-0410-b5e6-96231b3b80d8
POD type, causing memory corruption when mapping to APInts with bitwidth > 64.
Merge another crash testcase into crash.ll while there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158369 91177308-0d34-0410-b5e6-96231b3b80d8
topologies, it is quite possible for a leaf node to have huge multiplicity, for
example: x0 = x*x, x1 = x0*x0, x2 = x1*x1, ... rapidly gives a value which is x
raised to a vast power (the multiplicity, or weight, of x). This patch fixes
the computation of weights by correctly computing them no matter how big they
are, rather than just overflowing and getting a wrong value. It turns out that
the weight for a value never needs more bits to represent than the value itself,
so it is enough to represent weights as APInts of the same bitwidth and do the
right overflow-avoiding dance steps when computing weights. As a side-effect it
reduces the number of multiplies needed in some cases of large powers. While
there, in view of external uses (eg by the vectorizer) I made LinearizeExprTree
static, pushing the rank computation out into users. This is progress towards
fixing PR13021.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158358 91177308-0d34-0410-b5e6-96231b3b80d8
We turned off the CMN instruction because it had semantics which we weren't
getting correct. If we are comparing with an immediate, then it's okay to use
the CMN instruction.
<rdar://problem/7569620>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158302 91177308-0d34-0410-b5e6-96231b3b80d8
This saves a cast, and zext is more expensive on platforms with subreg support
than trunc is. This occurs in the BSD implementation of memchr(3), see PR12750.
On the synthetic benchmark from that bug stupid_memchr and bsd_memchr have the
same performance now when not inlining either function.
stupid_memchr: 323.0us
bsd_memchr: 321.0us
memchr: 479.0us
where memchr is the llvm-gcc compiled bsd_memchr from osx lion's libc. When
inlining is enabled bsd_memchr still regresses down to llvm-gcc memchr time,
I haven't fully understood the issue yet, something is grossly mangling the
loop after inlining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158297 91177308-0d34-0410-b5e6-96231b3b80d8
Over the entire test-suite, this has an insignificantly negative average
performance impact, but reduces some of the worst slowdowns from the
anti-dep. change (r158294).
Largest speedups:
SingleSource/Benchmarks/Stanford/Quicksort - 28%
SingleSource/Benchmarks/Stanford/Towers - 24%
SingleSource/Benchmarks/Shootout-C++/matrix - 23%
MultiSource/Benchmarks/SciMark2-C/scimark2 - 19%
MultiSource/Benchmarks/MiBench/automotive-bitcount/automotive-bitcount - 15%
(matrix and automotive-bitcount were both in the top-5 slowdown list from the
anti-dep. change)
Largest slowdowns:
MultiSource/Benchmarks/McCat/03-testtrie/testtrie - 28%
MultiSource/Benchmarks/mediabench/gsm/toast/toast - 26%
MultiSource/Benchmarks/MiBench/automotive-susan/automotive-susan - 21%
SingleSource/Benchmarks/CoyoteBench/lpbench - 20%
MultiSource/Applications/d/make_dparser - 16%
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158296 91177308-0d34-0410-b5e6-96231b3b80d8
The PPC64 backend had patterns for i32 <-> i64 extensions and truncations that
would leave self-moves in the final assembly. Replacing those patterns with ones
based on the SUBREG builtins yields better-looking code.
Thanks to Jakob and Owen for their suggestions in this matter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158283 91177308-0d34-0410-b5e6-96231b3b80d8
Tail merging had been disabled on PPC because it would disturb bundling decisions
made during pre-RA scheduling on the 970 cores. Now, however, all bundling decisions
are made during post-RA scheduling, and tail merging is generally beneficial (the
average test-suite speedup is insignificantly positive).
Largest test-suite speedups:
MultiSource/Benchmarks/mediabench/gsm/toast/toast - 30%
MultiSource/Benchmarks/BitBench/uuencode/uuencode - 23%
SingleSource/Benchmarks/Shootout-C++/ary - 21%
SingleSource/Benchmarks/Stanford/Queens - 17%
Largest slowdowns:
MultiSource/Benchmarks/MiBench/security-sha/security-sha - 24%
MultiSource/Benchmarks/McCat/03-testtrie/testtrie - 22%
MultiSource/Applications/JM/ldecod/ldecod - 14%
MultiSource/Benchmarks/mediabench/g721/g721encode/encode - 9%
This is improved by using full (instead of just critical) anti-dependency breaking,
but doing so still causes miscompiles and so cannot yet be enabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158259 91177308-0d34-0410-b5e6-96231b3b80d8
The fast register allocator is not supposed to work in the optimizing
pipeline. It doesn't make sense to compute live intervals, run full copy
coalescing, and then run RAFast.
Fast register allocation in the optimizing pipeline is better done by
RABasic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158242 91177308-0d34-0410-b5e6-96231b3b80d8
-%a + 42
into
42 - %a
previously we were emitting:
-(%a + 42)
This fixes the infinite loop in PR12338. The generated code is still not perfect, though.
Will work on that next
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158237 91177308-0d34-0410-b5e6-96231b3b80d8
Thanks to Jakob's help, this now causes no new test suite failures!
Over the entire test suite, this gives an average 1% speedup. The largest speedups are:
SingleSource/Benchmarks/Misc/pi - 108%
SingleSource/Benchmarks/CoyoteBench/lpbench - 54%
MultiSource/Benchmarks/Prolangs-C/unix-smail/unix-smail - 50%
SingleSource/Benchmarks/Shootout/ary3 - 32%
SingleSource/Benchmarks/Shootout-C++/matrix - 30%
The largest slowdowns are:
MultiSource/Benchmarks/mediabench/gsm/toast/toast - -30%
MultiSource/Benchmarks/Prolangs-C/bison/mybison - -25%
MultiSource/Benchmarks/BitBench/uuencode/uuencode - -22%
MultiSource/Applications/d/make_dparser - -14%
SingleSource/Benchmarks/Shootout-C++/ary - -13%
In light of these slowdowns, additional profiling work is obviously needed!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158223 91177308-0d34-0410-b5e6-96231b3b80d8
The pass itself works well, but the something in the Machine* infrastructure
does not understand terminators which define registers. Without the ability
to use the block-placement pass, etc. this causes performance regressions (and
so is turned off by default). Turning off the analysis turns off the problems
with the Machine* infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158206 91177308-0d34-0410-b5e6-96231b3b80d8
The code which tests for an induction operation cannot assume that any
ADDI instruction will have a register operand because the operand could
also be a frame index; for example:
%vreg16<def> = ADDI8 <fi#0>, 0; G8RC:%vreg16
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158205 91177308-0d34-0410-b5e6-96231b3b80d8
This pass is derived from the Hexagon HardwareLoops pass. The only significant enhancement over the Hexagon
pass is that PPCCTRLoops will also attempt to delete the replaced add and compare operations if they are
no longer otherwise used. Also, invalid preheader DebugLoc is not used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158204 91177308-0d34-0410-b5e6-96231b3b80d8
can move instructions within the instruction list. If the instruction just
happens to be the one the basic block iterator is pointing to, and it is
moved to a different basic block, then we get into an infinite loop due to
the iterator running off the end of the basic block (for some reason this
doesn't fire any assertions). Original commit message:
Grab-bag of reassociate tweaks. Unify handling of dead instructions and
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158199 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will generate the following for integer ABS:
movl %edi, %eax
negl %eax
cmovll %edi, %eax
INSTEAD OF
movl %edi, %ecx
sarl $31, %ecx
leal (%rdi,%rcx), %eax
xorl %ecx, %eax
There exists a target-independent DAG combine for integer ABS, which converts
integer ABS to sar+add+xor. For X86, we match this pattern back to neg+cmov.
This is implemented in PerformXorCombine.
rdar://10695237
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158175 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158126 91177308-0d34-0410-b5e6-96231b3b80d8
The commit is intended to fix rdar://11540023.
It is implemented as part of peephole optimization. We can actually implement
this in the SelectionDAG lowering phase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158122 91177308-0d34-0410-b5e6-96231b3b80d8
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158073 91177308-0d34-0410-b5e6-96231b3b80d8