The previous fix only checked for simple cycles, use a set to catch longer
cycles too.
Drop the broken check from the ObjectSizeOffsetEvaluator. The BoundsChecking
pass doesn't have to deal with invalid IR like InstCombine does.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162120 91177308-0d34-0410-b5e6-96231b3b80d8
make it more consistent with its intended semantics.
The `linker_private_weak_def_auto' linkage type was meant to automatically hide
globals which never had their addresses taken. It has nothing to do with the
`linker_private' linkage type, which outputs the symbols with a `l' (ell) prefix
among other things.
The intended semantic is more like the `linkonce_odr' linkage type.
Change the name of the linkage type to `linkonce_odr_auto_hide'. And therefore
changing the semantics so that it produces the correct output for the linker.
Note: The old linkage name `linker_private_weak_def_auto' will still parse but
is not a synonym for `linkonce_odr_auto_hide'. This should be removed in 4.0.
<rdar://problem/11754934>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162114 91177308-0d34-0410-b5e6-96231b3b80d8
multiple edges between two blocks is linear. If the caller is iterating all
edges leaving a BB that would be a square time algorithm. It is more efficient
to have the callers handle that case.
Currently the only callers are:
* GVN: already avoids the multiple edge case.
* Verifier: could only hit this assert when looking at an invalid invoke. Since
it already rejects the invoke, just avoid computing the dominance for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162113 91177308-0d34-0410-b5e6-96231b3b80d8
Increment the MBB iterator at the top of the loop to properly handle the
current (and previous) instructions getting erased.
This fixes PR13625.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162099 91177308-0d34-0410-b5e6-96231b3b80d8
I really need to find a way to automate this, but I can't come up with a regex
that has no false positives while handling tricky cases like custom check
prefixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162097 91177308-0d34-0410-b5e6-96231b3b80d8
include/llvm/IntrinsicsHexagon.td: Hexagon_Intrinsic is the base class
for all Hexagon intrinsics and not altivec intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162087 91177308-0d34-0410-b5e6-96231b3b80d8
It is not my plan to duplicate the entire ARM instruction set with
predicated versions. We need a way of representing predicated
instructions in SSA form without requiring a separate opcode.
Then the pseudo-instructions can go away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162061 91177308-0d34-0410-b5e6-96231b3b80d8
Select instructions pick one of two virtual registers based on a
condition, like x86 cmov. On targets like ARM that support predication,
selects can sometimes be eliminated by predicating the instruction
defining one of the operands.
Teach PeepholeOptimizer to recognize select instructions, and ask the
target to optimize them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162059 91177308-0d34-0410-b5e6-96231b3b80d8
where some fact lake a=b dominates a use in a phi, but doesn't dominate the
basic block itself.
This feature could also be implemented by splitting critical edges, but at least
with the current algorithm reasoning about the dominance directly is faster.
The time for running "opt -O2" in the testcase in pr10584 is 1.003 times slower
and on gcc as a single file it is 1.0007 times faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162023 91177308-0d34-0410-b5e6-96231b3b80d8
Without fastcc support, the caller just falls through to CallingConv::C
for fastcc, but callee still uses fastcc, this inconsistency of calling
convention is a problem, and fastcc support can fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162013 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM select instructions are just predicated moves. If the select is
the only use of an operand, the instruction defining the operand can be
predicated instead, saving one instruction and decreasing register
pressure.
This implementation can turn AND/ORR/EOR instructions into their
corresponding ANDCC/ORRCC/EORCC variants. Ideally, we should be able to
predicate any instruction, but we don't yet support predicated
instructions in SSA form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161994 91177308-0d34-0410-b5e6-96231b3b80d8
around. That's not how we do things. Besides, the commit message tells us that
it is covered by the GCC test suite.
------------------------------------------------------------------------
r127497 | zwarich | 2011-03-11 13:51:56 -0800 (Fri, 11 Mar 2011) | 3 lines
Fix the GCC test suite issue exposed by r127477, which was caused by stack
protector insertion not working correctly with unreachable code. Since that
revision was rolled out, this test doesn't actual fail before this fix.
------------------------------------------------------------------------
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161985 91177308-0d34-0410-b5e6-96231b3b80d8
allocations of executable memory would not be padded
to account for the size of the allocation header.
This resulted in undersized allocations, meaning that
when the allocation was written to later the next
allocation's header would be corrupted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161984 91177308-0d34-0410-b5e6-96231b3b80d8
This can be used to tell TableGen to use a specific SubRegIndex instead
of synthesizing one when discovering all sub-registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161982 91177308-0d34-0410-b5e6-96231b3b80d8
TableGen sometimes synthesizes missing sub-register indexes. Emit these
indexes as enumerators in the target namespace along with the
user-defined ones.
Also take this opportunity to stop creating new Record objects for
synthetic indexes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161964 91177308-0d34-0410-b5e6-96231b3b80d8