which have successfully round-tripped through the combine phase, and use
this to ensure all operands to DAG nodes are visited by the combiner,
even if they are only added during the combine phase.
This is critical to have the combiner reach nodes that are *introduced*
during combining. Previously these would sometimes be visited and
sometimes not be visited based on whether they happened to end up on the
worklist or not. Now we always run them through the combiner.
This fixes quite a few bad codegen test cases lurking in the suite while
also being more principled. Among these, the TLS codegeneration is
particularly exciting for programs that have this in the critical path
like TSan-instrumented binaries (although I think they engineer to use
a different TLS that is faster anyways).
I've tried to check for compile-time regressions here by running llc
over a merged (but not LTO-ed) clang bitcode file and observed at most
a 3% slowdown in llc. Given that this is essentially a worst case (none
of opt or clang are running at this phase) I think this is tolerable.
The actual LTO case should be even less costly, and the cost in normal
compilation should be negligible.
With this combining logic, it is possible to re-legalize as we combine
which is necessary to implement PSHUFB formation on x86 as
a post-legalize DAG combine (my ultimate goal).
Differential Revision: http://reviews.llvm.org/D4638
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213898 91177308-0d34-0410-b5e6-96231b3b80d8
insertions.
The old behavior could cause arbitrarily bad memory usage in the DAG
combiner if there was heavy traffic of adding nodes already on the
worklist to it. This commit switches the DAG combine worklist to work
the same way as the instcombine worklist where we null-out removed
entries and only add new entries to the worklist. My measurements of
codegen time shows slight improvement. The memory utilization is
unsurprisingly dominated by other factors (the IR and DAG itself
I suspect).
This change results in subtle, frustrating churn in the particular order
in which DAG combines are applied which causes a number of minor
regressions where we fail to match a pattern previously matched by
accident. AFAICT, all of these should be using AddToWorklist to directly
or should be written in a less brittle way. None of the changes seem
drastically bad, and a few of the changes seem distinctly better.
A major change required to make this work is to significantly harden the
way in which the DAG combiner handle nodes which become dead
(zero-uses). Previously, we relied on the ability to "priority-bump"
them on the combine worklist to achieve recursive deletion of these
nodes and ensure that the frontier of remaining live nodes all were
added to the worklist. Instead, I've introduced a routine to just
implement that precise logic with no indirection. It is a significantly
simpler operation than that of the combiner worklist proper. I suspect
this will also fix some other problems with the combiner.
I think the x86 changes are really minor and uninteresting, but the
avx512 change at least is hiding a "regression" (despite the test case
being just noise, not testing some performance invariant) that might be
looked into. Not sure if any of the others impact specific "important"
code paths, but they didn't look terribly interesting to me, or the
changes were really minor. The consensus in review is to fix any
regressions that show up after the fact here.
Thanks to the other reviewers for checking the output on other
architectures. There is a specific regression on ARM that Tim already
has a fix prepped to commit.
Differential Revision: http://reviews.llvm.org/D4616
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213727 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.
Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.
On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.
Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.
The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.
Unit tests are updated so they don't depend on SD scheduling heuristics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192750 91177308-0d34-0410-b5e6-96231b3b80d8
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186258 91177308-0d34-0410-b5e6-96231b3b80d8
there are clearly no stores between the load and the store. This fixes
this miscompile reported as PR7833.
This breaks the test/CodeGen/X86/narrow_op-2.ll optimization, which is
safe, but awkward to prove safe. Move it to X86's README.txt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112861 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't occur much at all, it only seems to formed in the case
when the trunc optimization kicks in due to phase ordering. In that
case it is saves a few bytes on x86-32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101350 91177308-0d34-0410-b5e6-96231b3b80d8
a load/or/and/store sequence into a narrower store when it is
safe. Daniel tells me that clang will start producing this sort
of thing with bitfields, and this does trigger a few dozen times
on 176.gcc produced by llvm-gcc even now.
This compiles code like CodeGen/X86/2009-05-28-DAGCombineCrash.ll
into:
movl %eax, 36(%rdi)
instead of:
movl $4294967295, %eax ## imm = 0xFFFFFFFF
andq 32(%rdi), %rax
shlq $32, %rcx
addq %rax, %rcx
movq %rcx, 32(%rdi)
and each of the testcases into a single store. Each of them used
to compile into craziness like this:
_test4:
movl $65535, %eax ## imm = 0xFFFF
andl (%rdi), %eax
shll $16, %esi
addl %eax, %esi
movl %esi, (%rdi)
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101343 91177308-0d34-0410-b5e6-96231b3b80d8