related transformations out of target-specific dag combine into the
ARM backend. These were added by Evan in r37685 with no testcases
and only seems to help ARM (e.g. test/CodeGen/ARM/select_xform.ll).
Add some simple X86-specific (for now) DAG combines that turn things
like cond ? 8 : 0 -> (zext(cond) << 3). This happens frequently
with the recently added cp constant select optimization, but is a
very general xform. For example, we now compile the second example
in const-select.ll to:
_test:
movsd LCPI2_0, %xmm0
ucomisd 8(%esp), %xmm0
seta %al
movzbl %al, %eax
movl 4(%esp), %ecx
movsbl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 4(%esp), %eax
leal 4(%eax), %ecx
movsd LCPI2_0, %xmm0
ucomisd 8(%esp), %xmm0
cmovbe %eax, %ecx
movsbl (%ecx), %eax
ret
This passes multisource and dejagnu.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66779 91177308-0d34-0410-b5e6-96231b3b80d8
alignment of the generated constant pool entry to the
desired alignment of a type. If we don't do this, we end up
trying to do movsd from 4-byte alignment memory. This fixes
450.soplex and 456.hmmer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66641 91177308-0d34-0410-b5e6-96231b3b80d8
1. Use the same value# to represent unknown values being merged into sub-registers.
2. When coalescer commute an instruction and the destination is a physical register, update its sub-registers by merging in the extended ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66610 91177308-0d34-0410-b5e6-96231b3b80d8
the same say the "test" instruction does in overflow cases,
so eliminating the test is only safe when those bits aren't
needed, as is the case for COND_E and COND_NE, or if it
can be proven that no overflow will occur. For now, just
restrict the optimization to COND_E and COND_NE and don't
do any overflow analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66318 91177308-0d34-0410-b5e6-96231b3b80d8
with multiple chain operands. This can occur when the scheduler
has added chain operands to a node that already has a chain
operand, in order to handle physical register dependencies.
This fixes an llvm-gcc bootstrap failure on x86-64 introduced
in r66058.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66240 91177308-0d34-0410-b5e6-96231b3b80d8
so it changed it into a 31 via the TLO.ShrinkDemandedConstant() call. Then it
would go through the DAG combiner again. This time it had a value of 31, which
was turned into a -1 by TLI.SimplifyDemandedBits(). This would ping pong
forever.
Teach the TLO.ShrinkDemandedConstant() call not to lower a value if the demanded
value is an XOR of all ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65985 91177308-0d34-0410-b5e6-96231b3b80d8
instruction. The class also consolidates the code for detecting constant
splats that's shared across PowerPC and the CellSPU backends (and might be
useful for other backends.) Also introduces SelectionDAG::getBUID_VECTOR() for
generating new BUILD_VECTOR nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65296 91177308-0d34-0410-b5e6-96231b3b80d8
Now we're using one gross, but quite robust hack :) (previous ones
did not work, for example, when ext_weak symbol was used deep inside
constant expression in the initializer).
The proper fix of this problem will require some quite huge asmprinter
changes and that's why was postponed. This fixes PR3629 by the way :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65230 91177308-0d34-0410-b5e6-96231b3b80d8
addresses, part 1. This fixes an obvious logic bug. Previously if the only
in-loop use is a PHI, it would return AllUsesAreAddresses as true.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65178 91177308-0d34-0410-b5e6-96231b3b80d8